1
|
Byun JH, Hyeon JY, Hettiarachchi SA, Udagawa S, Mahardini A, Kim JM, Hur SP, Takemura A. Effects of dopamine and melatonin treatment on the expression of the genes associated with artificially induced sexual maturation in Japanese eel, Anguilla japonica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:389-399. [PMID: 38334250 DOI: 10.1002/jez.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Japanese eel (Anguilla japonica) is a commercially important fish species in Asia. Understanding factors like photoperiod, temperature, and lunar cycles is crucial for successful aquaculture and managing its reproduction. Melatonin and dopamine (DA) are essential for regulating reproduction in vertebrates, including fish. This study investigated the effects of melatonin and DA on the reproductive system of mature male Japanese eels to better understand reproductive regulation in fish. To clarify the effects of these hormones on sexual maturation in eels, a critical stage in the reproductive process, sexual maturation was induced by injecting human chorionic gonadotropin, which stimulates the production of sex hormones. To check the effect of melatonin and DA on sexual maturation, DA, melatonin, and DA + domperidone were intraperitoneally injected into fish from each group (six per treatment) at a dose of 1 mg/kg body weight. The fish were then examined using quantitative RT-PCR by comparing the messenger RNA level of reproduction-related genes (gonadotropin releasing hormone 1; gnrh1, gonadotropin releasing hormone 2; gnrh2, follicle stimulating hormone; fshβ, luteinizing hormone; lhβ and DA receptor 2b; d2b), involved in the gonadotropic axis in eels, to those that received a control injection. The results indicate significant differences in the expression levels of gnrh1, gnrh2 and d2b in the brain and d2b, fshβ, lhβ in the pituitary at different stages of sexual maturation. Melatonin appears to enhance the production of sex gonadotropins, whereas DA inhibits them. These findings suggest an interaction between melatonin and DA in regulating reproduction in Japanese eels.
Collapse
Affiliation(s)
- Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ji-Yeon Hyeon
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, South Korea
| | | | - Shingo Udagawa
- Department of Co-Creation Management, Organization for Research Promotion, University of the Ryukyus, Okinawa, Japan
| | - Angka Mahardini
- Department of Marine Science, Faculty of Science, Diponegoro University, Semarang, Indonesia
| | - Jong-Myoung Kim
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
2
|
Tamrakar S, Huerta B, Chung-Davidson YW, Li W. Plasma metabolomic profiles reveal sex- and maturation-dependent metabolic strategies in sea lamprey (Petromyzon marinus). Metabolomics 2022; 18:90. [PMID: 36346466 DOI: 10.1007/s11306-022-01951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Adult sea lamprey (Petromyzon marinus) cease feeding and migrate to spawning streams where males build nests, undergo final sexual maturation, and subsequently produce and release large quantities of bile acid pheromones that attract mature females. These animals are predicted to rearrange their metabolic pathways drastically to support their reproductive strategies, presenting advantageous opportunities to examine how sex and the maturation processes affect metabolism. OBJECTIVES The objective is to investigate the metabolic differences between sexes and maturation states in sea lamprey that support changes in physiological functions. METHODS We compared plasma metabolomes of spawning and prespawning sea lamprey in both sexes using both non-targeted and targeted metabolomics approaches using UPLC/MS-MS with electrospray ionization in both positive and negative modes. The data were processed using Progenesis QI, Compound Discoverer and XCMS softwares for alignment, peak picking, and deconvolution of the peaks. Principle component analyses (PCA) and partial least squares discriminant analyses (PLS-DA) were performed using SIMCA and Metaboanalyst softwares to identify discriminating features, followed by fragmentation matching with extensive database search and pathway mapping. RESULTS The pheromonal bile acid biosynthesis was upregulated significantly in males compared to females. Spermiating males further upregulated bile acid biosynthesis by altering amino acid metabolisms, upregulating cofactors and nucleotide metabolisms, but downregulating carbohydrate and energy metabolisms. CONCLUSION Plasma metabolomes are sex- and maturation-dependent and reflect the special metabolic demands at each life stage and reproductive strategy.
Collapse
Affiliation(s)
- Sonam Tamrakar
- Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI, USA
| | - Belinda Huerta
- Chemistry Department, Southern Connecticut State University, New Haven, CT, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI, USA
| | - Weiming Li
- Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Amri A, Kessabi K, Bouraoui Z, Sakli S, Gharred T, Guerbej H, Messaoudi I, Jebali J. Effect of melatonin and folic acid supplementation on the growth performance, antioxidant status, and liver histology of the farmed gilthead sea bream (Sparus aurata L.) under standard rearing conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2265-2280. [PMID: 32978696 DOI: 10.1007/s10695-020-00879-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to investigate the effect of dietary of melatonin (MLT) and folic acid (FA) administrations on growth performance, antioxidant status, and liver histological structure of juvenile gilthead sea bream, Sparus aurata L. under standard rearing conditions. Four diets were considered: a basal diet considered a control and three diets supplemented with 40 mg/kg of melatonin (MLT), 2 mg/kg of folic acid (FA), and with the mixture of melatonin and folic acid (MLT + FA). Each diet was randomly allocated to triplicate groups of fish (mean initial weight was 2.99 ± 0.55 g) for 41 days. The obtained results clearly indicated that the melatonin-supplemented diet decreased significantly the growth performance parameters (final body weight, weight gain rate, and specific growth rate) and IGF-1 level of the gilthead sea bream, while the folic acid-supplemented diet has no significant effect on these parameters. The mixture supplementation of melatonin and folic acid has no significant effect on the growth parameters due to the possible interaction between melatonin and folic acid effects. Furthermore, fish fed with all experimental diets showed significantly higher superoxide dismutase activity (SOD) and protein sulfhydryl level (PSH) and lower lipid peroxidation level (TBARS) and catalase activity (CAT) which confirm their powerful antioxidant role. The acetylcholinesterase activity (ACHE) decreased in fish fed with all experimental diets. The underlying mechanisms of driving melatonin and folic acid to reduce acetylcholinesterase activity require further studies. The histological structure of liver of control S. aurata fish shows severe hepatic lipid accumulation in large vacuoles that diminished after dietary individual or mixture folic acid and melatonin supplementations over 41 days. This work proved that 2 mg/kg of dietary folic acid has a positive effect on the growth performance, oxidative stress defense, and hepatic lipid accumulation reduction in the gilthead sea bream fish. Under our experimental conditions, melatonin failed to improve the growth indexes WGR, SGR, and IGF-I. This study recommends the diet supplementation with a dose lower than 2 mg/kg of food due to the observed effects on tissue ACHE activity.
Collapse
Affiliation(s)
- Afef Amri
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Haded Street, B.P. n 74, 5000, 5000, Monastir, Tunisia
| | - Kaouthar Kessabi
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Haded Street, B.P. n 74, 5000, 5000, Monastir, Tunisia
| | - Zied Bouraoui
- National Institute of Sciences and Technologies of the Sea, Laboratory of Blue Biotechnology and Aquatic Bioproducts, 1002, Monastir, Tunis, Tunisia
| | - Sabrine Sakli
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Haded Street, B.P. n 74, 5000, 5000, Monastir, Tunisia
| | - Tahar Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Sciences and Technologies of the Sea, Laboratory of Blue Biotechnology and Aquatic Bioproducts, 1002, Monastir, Tunis, Tunisia
| | - Imed Messaoudi
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Haded Street, B.P. n 74, 5000, 5000, Monastir, Tunisia
| | - Jamel Jebali
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Tahar Haded Street, B.P. n 74, 5000, 5000, Monastir, Tunisia.
| |
Collapse
|
4
|
Cádiz MI, López ME, Díaz-Domínguez D, Cáceres G, Yoshida GM, Gomez-Uchida D, Yáñez JM. Whole genome re-sequencing reveals recent signatures of selection in three strains of farmed Nile tilapia (Oreochromis niloticus). Sci Rep 2020; 10:11514. [PMID: 32661317 PMCID: PMC7359307 DOI: 10.1038/s41598-020-68064-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Nile tilapia belongs to the second most cultivated group of fish in the world, mainly because of its favorable characteristics for production. Genetic improvement programs and domestication process of Nile tilapia may have modified the genome through selective pressure, leaving signals that can be detected at the molecular level. In this work, signatures of selection were identified using genome-wide SNP data, by two haplotype-based (iHS and Rsb) and one FST based method. Whole-genome re-sequencing of 326 individuals from three strains (A, B and C) of farmed tilapia maintained in Brazil and Costa Rica was carried out using Illumina HiSeq 2500 technology. After applying conventional SNP-calling and quality-control filters, ~ 1.3 M high-quality SNPs were inferred and used as input for the iHS, Rsb and FST based methods. We detected several candidate genes putatively subjected to selection in each strain. A considerable number of these genes are associated with growth (e.g. NCAPG, KLF3, TBC1D1, TTN), early development (e.g. FGFR3, PFKFB3), and immunity traits (e.g. NLRC3, PIGR, MAP1S). These candidate genes represent putative genomic landmarks that could be associated to traits of biological and commercial interest in farmed Nile tilapia.
Collapse
Affiliation(s)
- María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, 8820808, La Pintana, Santiago, Chile.,Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, 8820808, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, 8820808, La Pintana, Santiago, Chile.,Department of Animal Breeding and Genetics, Swedish University of Agriculturall Sciences, Uppsala, Sweden
| | - Diego Díaz-Domínguez
- Departamento de Ciencias de la Computación, Universidad de Chile, Santiago, Chile
| | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, 8820808, La Pintana, Santiago, Chile.,Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, 8820808, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, 8820808, La Pintana, Santiago, Chile
| | - Daniel Gomez-Uchida
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Núcleo Milenio INVASAL, Concepción, Chile
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, 8820808, La Pintana, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
5
|
|
6
|
Maugars G, Nourizadeh-Lillabadi R, Weltzien FA. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts. Front Endocrinol (Lausanne) 2020; 11:538196. [PMID: 33071966 PMCID: PMC7541902 DOI: 10.3389/fendo.2020.538196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In order to improve our understanding of melatonin signaling, we have reviewed and revised the evolutionary history of melatonin receptor genes (mtnr) in vertebrates. All gnathostome mtnr genes have a conserved gene organization with two exons, except for mtnr1b paralogs of some teleosts that show intron gains. Phylogeny and synteny analyses demonstrate the presence of four mtnr subtypes, MTNR1A, MTNR1B, MTNR1C, MTNR1D that arose from duplication of an ancestral mtnr during the vertebrate tetraploidizations (1R and 2R). In tetrapods, mtnr1d was lost, independently, in mammals, in archosaurs and in caecilian amphibians. All four mtnr subtypes were found in two non-teleost actinopterygian species, the spotted gar and the reedfish. As a result of teleost tetraploidization (3R), up to seven functional mtnr genes could be identified in teleosts. Conservation of the mtnr 3R-duplicated paralogs differs among the teleost lineages. Synteny analysis showed that the mtnr1d was conserved as a singleton in all teleosts resulting from an early loss after tetraploidization of one of the teleost 3R and salmonid 4R paralogs. Several teleosts including the eels and the piranha have conserved both 3R-paralogs of mtnr1a, mtnr1b, and mtnr1c. Loss of one of the 3R-paralogs depends on the lineage: mtnr1ca was lost in euteleosts whereas mtnr1cb was lost in osteoglossomorphs and several ostariophysians including the zebrafish. We investigated the tissue distribution of mtnr expression in a large range of tissues in medaka. The medaka has conserved the four vertebrate paralogs, and these are expressed in brain and retina, and, differentially, in peripheral tissues. Photoperiod affects mtnr expression levels in a gene-specific and tissue-specific manner. This study provides new insights into the repertoire diversification and functional evolution of the mtnr gene family in vertebrates.
Collapse
|
7
|
Martins E, Almeida PR, Quintella BR, da Silva MG, Lança MJ. Muscle fatty acid profiles of sea lamprey (Petromyzon marinus L.) indicate the use of fast metabolized energy during ontogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:849-862. [PMID: 30368685 DOI: 10.1007/s10695-018-0580-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
A comprehensive characterization of muscle's FA composition of sea lamprey ammocoetes and adults was performed to test the hypothesis that larvae, and early spawning migrants have a similar FA profile prior to metamorphosis and to spawning migration. Subsequently, the role played by FA signature in these two highly demanding stages of life cycle was inferred. The results confirm that muscle represents an important fat reservoir, and the FA trophic markers revealed the importance of bacteria as sources of iso and anteiso FA and the strong trophic representation of benthic phytoplankton (diatoms) to larvae muscle FA profile. In early spawning migrants, the significance of marine food web to FA muscle profile is highlighted by the presence of FA signatures characteristics of herbivorous calanoid copepods. Although both life cycle phases studied do not share the same muscle FA signature, there is a part of the profile that is common, which is characterized by FA used in β-oxidation, such as C18:1ω9 but also by medium chain FA and PUFA which points that PUFA are spared as fuel to β-oxidation process and probably used to the development of tissues membranes (ammocoetes) and gonadal development and eicosanoid production among others (early spawning migrants). Further studies on FA profile are necessary to elucidate the FA role either during different life stages (ontogeny) or in the distinct habitats frequented (freshwater versus marine) by this diadromous species.
Collapse
Affiliation(s)
- Elói Martins
- LAQV, REQUIMTE-Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Pedro R Almeida
- Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, 7004-516, Évora, Portugal
- MARE-Centro de Ciências do Mar e do Ambiente, Universidade de Évora, 7004-516, Évora, Portugal
| | - Bernardo R Quintella
- MARE-Centro de Ciências do Mar e do Ambiente, Universidade de Évora, 7004-516, Évora, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marco Gomes da Silva
- LAQV, REQUIMTE-Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Maria João Lança
- Departamento de Zootecnia, Escola de Ciências e Tecnologia, Universidade de Évora, 7004-516, Évora, Portugal.
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Zootecnia, Escola de Ciências e Tecnologia da Universidade de Évora, Largo dos Colegiais 2, 7004-516, Évora, Portugal.
| |
Collapse
|
8
|
Singh AK, Srivastava PP, Verma R, Srivastava SC, Kumar D, Ansari A. Effect of dietary administration of letrozole and tamoxifen on gonadal development, sex differentiation and biochemical changes in common carp (Cyprinus carpio L.). Reprod Fertil Dev 2017; 27:449-57. [PMID: 24411670 DOI: 10.1071/rd13234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022] Open
Abstract
The effect of letrozole and tamoxifen on the specific growth rate (SGR; % day(-1)), gonado-somatic index (GSI), total haemoglobin (g%), gonadal and serum protein as well as lipid, sex differentiation and 17β-oestradiol levels were studied in sexually undifferentiated Cyprinus carpio fingerlings 30 days post fertilisation (30 dpf) for 60 days. Results showed decreased GSI with tamoxifen treatment whereas letrozole increased it. There were reduced protein, lipid, triglyceride and cholesterol levels after treatment with tamoxifen and letrozole during gonadal development. Tamoxifen (200mgkg(-1) feed) induced 82.5% masculinisation, whereas letrozole in the same dose produced 98.5% males. Gonadal 17β-oestradiol significantly declined from 86.0±1.41pg per 100mg (control) to 45.5±1.94pg per 100mg with tamoxifen and 36.0±0.72pg per 100mg with letrozole treatment. Similarly, serum 17β-oestradiol levels also decreased after tamoxifen and letrozole treatments. Testicular development in 37.8% of fish treated with tamoxifen and letrozole was found to be more advanced (spermatocytes) than in the control (spermatogonium); however, there was reduced ovarian growth and increased atresia. It was concluded that letrozole and tamoxifen both significantly affect sex differentiation and gonadal maturity in C. carpio leading to the production of sex-reversed males, yet the effect of letrozole was more potent.
Collapse
Affiliation(s)
- Atul K Singh
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - P P Srivastava
- Biochemistry and Genomics Laboratory of Molecular Biology and Biotechnology Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Rita Verma
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Sharad C Srivastava
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Dinesh Kumar
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| | - Abubakar Ansari
- Exotic Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow-226002 (Uttar Pradesh), India
| |
Collapse
|
9
|
Alvarado MV, Carrillo M, Felip A. Melatonin-induced changes in kiss/gnrh gene expression patterns in the brain of male sea bass during spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:69-79. [DOI: 10.1016/j.cbpa.2015.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/04/2023]
|
10
|
Takase M, Murata M, Hibi K, Huifeng R, Endo H. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:385-394. [PMID: 24037271 DOI: 10.1007/s10695-013-9851-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.
Collapse
Affiliation(s)
- Mai Takase
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Minato-ku, Konan, Tokyo, 108-8477, Japan,
| | | | | | | | | |
Collapse
|
11
|
Sutharshin S, Sivashanth K, Thulasitha W. Lipid Changes in Relation to Maturation and Spawning of Tropical Double Spotted Queenfish, Scomberoides lysan (Forsskål, 1775). ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajava.2013.555.570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Singh AK. Introduction of modern endocrine techniques for the production of monosex population of fishes. Gen Comp Endocrinol 2013; 181:146-55. [PMID: 23063432 DOI: 10.1016/j.ygcen.2012.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 01/10/2023]
Abstract
Of the techniques available to mass-produce a sterile or monosex population, the hormonal induction of sex reversal is the most widely practiced. This paper presents the synthesis of works done on sex reversal using 17α methyltestosterone (17αMT), 17β estradiol, non-steroidal aromatase inhibitors (AIs) and oestrogen receptor agonist, tamoxifen in commercially important aquaculture species mossambique tilapia Oreochromis mossambicus, Nile tilapia Oreochromis niloticus, common carp Cyprinus carpio, mahseer Tor putitora and African catfish Clarias gariepinus. Results on sex reversal for producing female T. putitora delineated that treatment to fry of T. putitora 60 days post fertilization (60 dpf) with 17β estradiol (150 mg/kg feed) fetched 69.5% female population. Further, raised temperature (23 ± 1 °C) five degrees above ambient temperature brought about 37.5% female populations which was above the control (24.4% females). Feeding tilapia O. mossambicus fry after yolk sac absorption stage (8 dpf) with 17αMT incorporated diet (35 mg/kg feed) under long photoperiod (16L:8D) for 60 days obtained 100% sex reversed males with excellent growth. Treatment with tamoxifen and letrozole (200mg/kg feed) to fingerlings of C. carpio and O. niloticus for 60 days brought about 82.5% and 98.5% masculinization with increased level of testosterone (T). Letrozole treatments to C. gariepinus significantly (p<0.001) increased T level to 1197.76 ± 18.79 pg/ml when treatment was given through feed for 60 days and 1470.5 ± 20.76 pg/ml via intraperitoneal injection. There was significant deviation in sex ratio leading to high level of masculinization in different aquaculture species with treatments of hormones and AIs.
Collapse
Affiliation(s)
- Atul K Singh
- Exotic Fish Germplasm Section of Fish Health Management Division, National Bureau of Fish Genetic Resources, Canal Ring Road, PO Dilkusha, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
13
|
In vivo response of melatonin, gonadal activity and biochemical changes during CYP19 inhibited sex reversal in common carp Cyprinus carpio (L). Anim Reprod Sci 2013; 136:317-25. [DOI: 10.1016/j.anireprosci.2012.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
|