1
|
Whole-genome sequence-based association study for immune cells in an eight-breed pig heterogeneous population. J Genet Genomics 2022; 49:1068-1071. [PMID: 34601119 DOI: 10.1016/j.jgg.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
|
2
|
Zhang F, Yang T, Ao H, Zhai L, Tan Z, Wang Y, Xing K, Zhao X, Wang Z, Yu Y, Wang C. Novel nucleotide variants in SLA-DOB and CD4 are associated with immune traits in pregnant sows. Gene 2019; 707:22-29. [PMID: 31026568 DOI: 10.1016/j.gene.2019.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
Reinforcing the immunity of pregnant sows can not only improve their own health condition but also increase the survival rate and healthy status of their piglets. This study aims to find single-nucleotide polymorphism (SNP) and molecular markers that are associated with the immune traits of pregnant sows. SLA-DOB and CD4 were selected as candidate genes, and blood samples were randomly collected from pregnant Landrace sows and used to detect T-lymphocyte subsets, interferon alpha, interleukin 6, Toll-like receptor 3, serum antibody immunoglobulin G, and porcine reproductive and respiratory syndrome virus-specific antibody. Then, association analyses were conducted for the polymorphic sites of candidate genes with immune traits. We found 12 mutations in the two genes and conducted an association study with eight of them. Our results indicated that among the eight mutations, SNP1, SNP2, and SNP3 of the SLA-DOB gene and Ins9, SNP10, and SNP11 in the CD4 gene are newly discovered mutations. Except for SNP1, SNP3, and SNP11, the other five SNPs are associated with at least one immune trait tested. Especially, SNP2 and Ins9 are significantly associated with at least one of the T-lymphocyte subgroups and at least one antibody. These novel mutations have potential important effects on the polymorphic loci of the above immune traits in pregnant sows. The results suggest that the SLA-DOB and CD4 genes and their genetic mutations can be considered as important candidate genes and mutations for the immunity of pregnant sows.
Collapse
Affiliation(s)
- Fengxia Zhang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ting Yang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hong Ao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhen Tan
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yuan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Kai Xing
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xitong Zhao
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China..
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China..
| |
Collapse
|
3
|
Zhao X, Wang Y, Guo J, Wang J. Correlation analyses of CpG island methylation of cluster of differentiation 4 protein with gene expression and T lymphocyte subpopulation traits. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018. [PMID: 29514434 PMCID: PMC6043439 DOI: 10.5713/ajas.17.0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective Cluster of differentiation 4 protein (CD4) gene is an important immune related gene which plays a significant role in T cell development and host resistance during viral infection. Methods In order to unravel the relationship of CpG island methylation level of CD4 gene with its gene expression and T lymphocyte subpopulation traits, we used one typical Chinese indigenous breed (Dapulian, DP) and one commercial breed (Landrace), then predicted the CpG island of CD4 gene, determined the methylation status of CpG sites by bisulfite sequencing polymerase chain reaction (BSP), and carried out the correlation analyses of methylation frequencies of CpG sites with mRNA expression and T lymphocyte subpopulation traits. Results There was one CpG island predicted in the upstream −2 kb region and exon one of porcine CD4 gene, which located 333 bp upstream from the start site of gene and contained nine CpG sites. The correlation analysis results indicated that the methylation frequency of CpG_2 significantly correlated with CD4 mRNA expression in the DP and Landrace combined population, though it did not reach significance level in DP and Landrace separately. Additionally, 15 potential binding transcription factors (TFs) were predicted within the CpG island, and one of them (Jumonji) contained CpG_2 site, suggesting that it may influence the CD4 gene expression through the potential binding TFs. We also found methylation frequency of CpG_2 negatively correlated with T lymphocyte subpopulation traits CD4+CD8−CD3−, CD4−CD8+CD3− and CD4+/CD8+, and positively correlated with CD4−CD8+CD3+ and CD4+CD8+CD3+ (for all correlation, p<0.01) in DP and Landrace combined population. Thus, the CpG_2 was a critical methylation site for porcine CD4 gene expression and T lymphocyte subpopulation traits. Conclusion We speculated that increased methylation frequency of CpG_2 may lead to the decreased expression of CD4, which may have some kind of influence on T lymphocyte subpopulation traits and the immunity of DP population.
Collapse
Affiliation(s)
- Xueyan Zhao
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianfeng Guo
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|