1
|
Milshteyn L, Villamejor A, Merchant A, Lownik J. A novel murine syngeneic CD8 peripheral T-cell lymphoma model with preclinical applications. Leuk Lymphoma 2024:1-7. [PMID: 39291652 DOI: 10.1080/10428194.2024.2404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Peripheral T-cell Lymphoma (PTCL) represents a heterogenous group of aggressive non-Hodgkin Lymphomas with poor prognostic outcomes and limited treatment options. The development and refinement of therapeutic strategies for PTCL are impeded by a paucity of reliable preclinical models that accurately mimic the disease's pathophysiology. There is a dire need for more physiologically relevant models for PTCL. Here we describe a spontaneousCD8+ peripheral T-cell lymphoma cell line (LM-23) derived from a 12-week-old female Balb/cJ mouse. Both intravenous and subcutaneous administration of this cell line to syngeneic Balb/cJ mice resulted in rapid establishment of tumor growth. CHOP and anti-PD1 treatment both displayed no benefit to mice in regulating tumor growth. Such results along with its phenotypic characteristics, rapid growth, and metastatic behavior in syngeneic mice highlight its value in studying the elusive disease and discovery of novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Joseph Lownik
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Zhan T, Song W, Jing G, Yuan Y, Kang N, Zhang Q. Zebrafish live imaging: a strong weapon in anticancer drug discovery and development. Clin Transl Oncol 2024; 26:1807-1835. [PMID: 38514602 DOI: 10.1007/s12094-024-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Developing anticancer drugs is a complex and time-consuming process. The inability of current laboratory models to reflect important aspects of the tumor in vivo limits anticancer medication research. Zebrafish is a rapid, semi-automated in vivo screening platform that enables the use of non-invasive imaging methods to monitor morphology, survival, developmental status, response to drugs, locomotion, or other behaviors. Zebrafish models are widely used in drug discovery and development for anticancer drugs, especially in conjunction with live imaging techniques. Herein, we concentrated on the use of zebrafish live imaging in anticancer therapeutic research, including drug screening, efficacy assessment, toxicity assessment, and mechanism studies. Zebrafish live imaging techniques have been used in numerous studies, but this is the first time that these techniques have been comprehensively summarized and compared side by side. Finally, we discuss the hypothesis of Zebrafish Composite Model, which may provide future directions for zebrafish imaging in the field of cancer research.
Collapse
Affiliation(s)
- Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
3
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
4
|
Huang L, Xie Q, Deng J, Wei WF. The role of cancer-associated fibroblasts in bladder cancer progression. Heliyon 2023; 9:e19802. [PMID: 37809511 PMCID: PMC10559166 DOI: 10.1016/j.heliyon.2023.e19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that critically contribute to cancer initiation and progression. In bladder cancer (BCa), there is emerging evidence that BCa CAFs are actively involved in cancer cell proliferation, invasion, metastasis, and chemotherapy resistance. This review outlines the present knowledge of BCa CAFs, with a particular emphasis on their origin and function in BCa progression, and provides further insights into their clinical application.
Collapse
Affiliation(s)
- Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Wen-Fei Wei
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Liang L, Yang Y, Liu H, Yuan F, Yuan Y, Li W, Huang C, Chen J, Liu Y. Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells. J Biol Inorg Chem 2023; 28:421-437. [PMID: 37097484 DOI: 10.1007/s00775-023-01997-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
A new ligand DFIP (2-(dibenzo[b,d]furan-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its two complexes iridium(III) [Ir(ppy)2(DFIP)](PF6) (ppy = 2-phenylpyridine, Ir1) and ruthenium(II) [Ru(bpy)2(DFIP)](PF6)2 (bpy = 2,2'-bipyridine, Ru1) were synthesized and characterized. The anticancer effects of the two complexes on A549, BEL-7402, HepG2, SGC-7901, HCT116 and normal LO2 cells were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex Ir1 shows high cytotoxic activity on A549, BEL-7402, SGC-7901 and HepG2, Ru1 exhibits moderate anticancer activity toward A549, BEL-7402 and SGC-7901 cells. The IC50 values of Ir1 and Ru1 toward A549 are 7.2 ± 0.1 and 22.6 ± 1.4 μM, respectively. The localization of complexes Ir1 and Ru1 in the mitochondrial, intracellular accumulation of reactive oxygen species (ROS) levels, and the changes of mitochondrial membrane potential (MMP) and cytochrome c (cyto-c) were investigated. Apoptosis and cell cycle were detected by flow cytometry. Immunogenic cell death (ICD) was used to detect the effects of Ir1 and Ru1 on the A549 using a confocal laser scanning microscope. The expression of apoptosis-related proteins was detected by western blotting. Ir1 and Ru1 can increase the intracellular ROS levels and release cyto-c, reduce the MMP, leading to the apoptosis of A549 cells and blocking the A549 cells at the G0/G1 phase. Additionally, the complexes caused a decrease of the expression of polyADP-ribose polymerase (PARP), caspase 3, Bcl-2 (B-cell lymphoma-2), PI3K (phosphoinositide-3 kinase) and upregulated the expression of Bax. All these findings indicated that the complexes exert anticancer efficacy to induce cell death through immunogenic cell death, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China.
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Fang Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
6
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdasait S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Sawyer WG. Three-Dimensional Bioconjugated Liquid-Like Solid (LLS) Enhance Characterization of Solid Tumor - Chimeric Antigen Receptor T cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529033. [PMID: 36865164 PMCID: PMC9980005 DOI: 10.1101/2023.02.17.529033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.
Collapse
Affiliation(s)
- Duy T. Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Ruixuan Liu
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elizabeth Ogando-Rivas
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Alfonso Pepe
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Diego Pedro
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Sadeem Qdasait
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Nhi Tran Yen Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Julia M. Lavrador
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Griffin R. Golde
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | | | - John Ligon
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - Linchun Jin
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Haipeng Tao
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | | | | | - Duane A. Mitchell
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elias J Sayour
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Jianping Huang
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Paul Castillo
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - W. Gregory Sawyer
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| |
Collapse
|
7
|
Zhang D, Qiao L. Intestine‐on‐a‐chip for intestinal disease study and pharmacological research. VIEW 2022. [DOI: 10.1002/viw.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, and Shanghai Stomatological Hospital Fudan University Shanghai China
| | - Liang Qiao
- Department of Chemistry, Institutes of Biomedical Sciences, and Shanghai Stomatological Hospital Fudan University Shanghai China
| |
Collapse
|
8
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
9
|
Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:cancers14051100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
|
10
|
Giuliano A. Companion Animal Model in Translational Oncology; Feline Oral Squamous Cell Carcinoma and Canine Oral Melanoma. BIOLOGY 2021; 11:biology11010054. [PMID: 35053051 PMCID: PMC8773126 DOI: 10.3390/biology11010054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Laboratory rodents are the most common animal models used in preclinical cancer research. Companion animals with naturally occurring cancers are an under-utilized natural model for the development of new anti-cancer drugs. Dogs and cats develop several types of cancers that resemble those arising in humans with similar clinical and histopathological features and often with similar molecular and genetic backgrounds. Exposure to environmental carcinogens, including air, food and water are also common between people and their pets. Dogs and cats are a unique model that could be integrated between the preclinical laboratory animal model and human clinical trials. Abstract Companion animals with naturally occurring cancers can provide an advantageous model for cancer research and in particular anticancer drug development. Compared to commonly utilized mouse models, companion animals, specifically dogs and cats, share a closer phylogenetical distance, body size, and genome organization. Most importantly, pets develop spontaneous, rather than artificially induced, cancers. The incidence of cancer in people and companion animals is quite similar and cancer is the leading cause of death in dogs over 10 years of age. Many cancer types in dogs and cats have similar pathological, molecular, and clinical features to their human counterparts. Drug toxicity and response to anti-cancer treatment in dogs and cats are also similar to those in people. Companion animals share their lives with their owners, including the environmental and socioeconomic cancer-risk factors. In contrast to humans, pets have a shorter life span and cancer progression is often more rapid. Clinical trials in companion animals are cheaper and less time consuming compared to human trials. Dogs and cats with naturally occurring cancers are an ideal and unique model for human cancer research. Model selection for the specific type of cancer is of pivotal importance. Although companion animal models for translational research have been reviewed previously, this review will try to summarize the most important advantages and disadvantages of this model. Feline oral squamous cell carcinoma as a model for head and neck squamous cell carcinoma and canine oral melanoma as a model for mucosal melanoma and immunotherapy in people will be discussed as examples.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
11
|
Costard LS, Hosn RR, Ramanayake H, O'Brien FJ, Curtin CM. Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomater 2021; 132:360-378. [PMID: 33484910 DOI: 10.1016/j.actbio.2021.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scenario. Three-dimensional (3D) culture models may help to address the discrepancies of 2D and animal models. When cancer cells escape the primary tumour, they can invade at distant organs building secondary tumours, called metastasis. The development of metastasis leads to a dramatic decrease in the life expectancy of patients. Therefore, 3D systems to model the microenvironment of metastasis have also been developed. Several studies have demonstrated changes in cell behaviour and gene expression when cells are cultured in 3D compared to 2D and concluded a better comparability to cells in vivo. Of special importance is the effect seen in response to anti-cancer treatments as models are built primarily to serve as drug-testing platforms. This review highlights these changes between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate tumours. In addition to models aiming to mimic the primary tumour site, the effects of 3D cell culturing in bone metastasis models are also described. STATEMENT OF SIGNIFICANCE: Most in vitro studies in cancer research are performed in 2D and are subsequently validated in in vivo animal models. However, both models possess numerous limitations: 2D models fail to accurately model the tumour microenvironment while animal models are expensive, time-consuming and can differ considerably from humans. It is accepted that the cancer microenvironment plays a critical role in the disease, thus, 3D models have been proposed as a potential solution to address the discrepancies of 2D and animal models. This review highlights changes in cell behaviour, including proliferation, gene expression and chemosensitivity, between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate cancer as well as bone metastasis.
Collapse
|
12
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
13
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
14
|
Amawi H, Aljabali AAA, Boddu SHS, Amawi S, Obeid MA, Ashby CR, Tiwari AK. The use of zebrafish model in prostate cancer therapeutic development and discovery. Cancer Chemother Pharmacol 2021; 87:311-325. [PMID: 33392639 DOI: 10.1007/s00280-020-04211-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is now among the leading in vivo model for cancer research, including prostate cancer. They are an alternative economic model being used to study cancer development, proliferation, and metastasis. They can also be effectively utilized for the development of cancer drugs at all levels, including target validation, and high-throughput screening for possible lead molecules. In this review, we provide a comprehensive overview of the role of zebrafish as an in vivo model in prostate cancer research. Globally, prostate cancer is a leading cause of death in men. Although many molecular mechanisms have been identified as playing a role in the pathogenesis of prostate cancer, there is still a significant need to understand the initial events of the disease. Furthermore, current treatments are limited by the emergence of severe toxicities and multidrug resistance. There is an essential need for economical and relevant research tools to improve our understanding and overcome these problems. This review provides a comprehensive summary of studies that utilized zebrafish for different aims in prostate cancer research. We discuss the use of zebrafish in prostate cancer cell proliferation and metastasis, defining signaling pathways, drug discovery and therapeutic development against prostate cancer, and toxicity studies. Finally, this review highlights limitations in this field and future directions to efficiently use zebrafish as a robust model for prostate cancer therapeutics development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O.BOX 566, Irbid, 21163, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
| | - Sadam Amawi
- Department of Urology and General Surgery, Faculty of Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
15
|
Ding S, Li S, Zhang S, Li Y. Genetic Alterations and Checkpoint Expression: Mechanisms and Models for Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:227-250. [PMID: 32185713 DOI: 10.1007/978-981-15-3266-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we will sketch a story that begins with the breakdown of chromosome homeostasis and genomic stability. Genomic alterations may render tumor cells eternal life at the expense of immunogenicity. Although antitumor immunity can be primed through neoantigens or inflammatory signals, tumor cells have evolved countermeasures to evade immune surveillance and strike back by modulating immune checkpoint related pathways. At present, monoclonal antibody drugs targeting checkpoints like PD-1 and CTLA-4 have significantly prolonged the survival of a variety of cancer patients, and thus have marked a great achievement in the history of antitumor therapy. Nevertheless, this is not the end of the story. As the relationship between genomic alteration and checkpoint expression is being delineated though the advances of preclinical animal models and emerging technologies, novel checkpoint targets are on the way to be discovered.
Collapse
Affiliation(s)
- Shuai Ding
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Siqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Shujie Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Yan Li
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, 210061, China.
| |
Collapse
|
16
|
Uzoigwe CE. Heliovaccination: Solar mediated immunity against cancer. Exp Dermatol 2020; 29:477-480. [DOI: 10.1111/exd.14087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/19/2020] [Accepted: 02/10/2020] [Indexed: 01/25/2023]
|
17
|
Kunnumakkara AB, Bordoloi D, Sailo BL, Roy NK, Thakur KK, Banik K, Shakibaei M, Gupta SC, Aggarwal BB. Cancer drug development: The missing links. Exp Biol Med (Maywood) 2019; 244:663-689. [PMID: 30961357 PMCID: PMC6552400 DOI: 10.1177/1535370219839163] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT The success rate for cancer drugs which enter into phase 1 clinical trials is utterly less. Why the vast majority of drugs fail is not understood but suggests that pre-clinical studies are not adequate for human diseases. In 1975, as per the Tufts Center for the Study of Drug Development, pharmaceutical industries expended 100 million dollars for research and development of the average FDA approved drug. By 2005, this figure had more than quadrupled, to $1.3 billion. In order to recover their high and risky investment cost, pharmaceutical companies charge more for their products. However, there exists no correlation between drug development cost and actual sale of the drug. This high drug development cost could be due to the reason that all patients might not respond to the drug. Hence, a given drug has to be tested in large number of patients to show drug benefits and obtain significant results.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Mehdi Shakibaei
- Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich D-80336, Germany
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
18
|
Richter H, Karol A, Nuss K, Lenisa A, Bruellmann E, Maudens SS, Hoffmann H, von Rechenberg B, Kircher PR. Comparison of hock- and footpad-injection as a prostate adenocarcinoma model in rats. BMC Vet Res 2018; 14:327. [PMID: 30400793 PMCID: PMC6219108 DOI: 10.1186/s12917-018-1659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/19/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Objective of this study is a feasibility-test comparing hock- and footpad-injection in rats with inoculated MatLyLu - adenocarcinoma tumor model. This study compares the development of an adenocarcinoma model (MatLyLu) in 12 Copenhagen rats. Two groups (n = 6) of animals were inoculated with 1 × 106 MatLyLu tumor cells solved in 0.1 ml NaCl either by footpad or hock injection. All animals were examined before tumor inoculation and before euthanasia using a 3.0 Tesla MRI. Histological evaluation of all organs was performed post mortem. RESULTS Both types of injection were able to induce the adenocarcinoma model using MatLyLu tumor cells. The primary tumor could be visualized in MRI and confirmed histologically. Comparing the risk of reflux and the maximum injection volume during injection, the hock injection was superior to the footpad injection (less reflux, less anatomical restrictions for larger volumes). The hock injection induces a faster tumor growth compared to the footpad injection. As consequence the maximum level of long term discomfort after hock injection was reached earlier, even if it grew on a not weight bearing structure. Early lymph node tumor metastasis could not be observed macroscopically nor detected histologically. Therefore the reproducibility of the MatLyLu tumor model is questionable. CONCLUSION Hock injection is a feasible alternative technique compared with footpad-injection in rats. It provides a save and easy injection method for various early-terminated applications with the potential to increase animal welfare during tumor models in rats.
Collapse
Affiliation(s)
- Henning Richter
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland. .,Musculoskeletal Research Unit, Zurich, Switzerland.
| | | | - Katja Nuss
- Musculoskeletal Research Unit, Zurich, Switzerland
| | | | | | | | - Heinrich Hoffmann
- Powder Technology Lab, IMX_LTP, Station 12, MXD 340, EPFL, 1015, Lausanne, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Patrick R Kircher
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| |
Collapse
|
19
|
Klimczewska K, Kasperczuk A, Suwińska A. The Regulative Nature of Mammalian Embryos. Curr Top Dev Biol 2018; 128:105-149. [DOI: 10.1016/bs.ctdb.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-κB network. Proc Natl Acad Sci U S A 2012; 109:3475-80. [PMID: 22345562 DOI: 10.1073/pnas.1120375109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor-binding protein 2 (IGFBP2) is increasingly recognized as a glioma oncogene, emerging as a target for therapeutic intervention. In this study, we used an integrative approach to characterizing the IGFBP2 network, combining transcriptional profiling of human glioma with validation in glial cells and the replication-competent ASLV long terminal repeat with a splice acceptor/tv-a glioma mouse system. We demonstrated that IGFBP2 expression is closely linked to genes in the integrin and integrin-linked kinase (ILK) pathways and that these genes are associated with prognosis. We further showed that IGFBP2 activates integrin β1 and downstream invasion pathways, requires ILK to induce cell motility, and activates NF-κB. Most significantly, the IGFBP2/integrin/ILK/NF-κB network functions as a physiologically active signaling pathway in vivo by driving glioma progression; interfering with any point in the pathway markedly inhibits progression. The results of this study reveal a signaling pathway that is both targetable and highly relevant to improving the survival of glioma patients.
Collapse
|