1
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Mirzayans R. Changing the Landscape of Solid Tumor Therapy from Apoptosis-Promoting to Apoptosis-Inhibiting Strategies. Curr Issues Mol Biol 2024; 46:5379-5396. [PMID: 38920994 PMCID: PMC11202608 DOI: 10.3390/cimb46060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The many limitations of implementing anticancer strategies under the term "precision oncology" have been extensively discussed. While some authors propose promising future directions, others are less optimistic and use phrases such as illusion, hype, and false hypotheses. The reality is revealed by practicing clinicians and cancer patients in various online publications, one of which has stated that "in the quest for the next cancer cure, few researchers bother to look back at the graveyard of failed medicines to figure out what went wrong". The message is clear: Novel therapeutic strategies with catchy names (e.g., synthetic "lethality") have not fulfilled their promises despite decades of extensive research and clinical trials. The main purpose of this review is to discuss key challenges in solid tumor therapy that surprisingly continue to be overlooked by the Nomenclature Committee on Cell Death (NCCD) and numerous other authors. These challenges include: The impact of chemotherapy-induced genome chaos (e.g., multinucleation) on resistance and relapse, oncogenic function of caspase 3, cancer cell anastasis (recovery from late stages of apoptosis), and pitfalls of ubiquitously used preclinical chemosensitivity assays (e.g., cell "viability" and tumor growth delay studies in live animals) that score such pro-survival responses as "lethal" events. The studies outlined herein underscore the need for new directions in the management of solid tumors.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
3
|
Wei W, Liu C, Yao R, Tan Q, Wang Q, Tian H. miR‑486‑5p suppresses gastric cancer cell growth and migration through downregulation of fibroblast growth factor 9. Mol Med Rep 2021; 24:771. [PMID: 34490480 PMCID: PMC8436225 DOI: 10.3892/mmr.2021.12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs serve essential roles in regulating mRNA and protein expression and dysregulation of non-coding RNAs participates in a variety of types of cancer. microRNAs (miRNAs/miRs), which are 21–24 nucleotides non-coding RNAs, have been shown to be important for the development of gastric cancer (GC). However, the role of miR-486-5p in GC remains to be elucidated. The present study found that miR-486-5p was downregulated in GC tissues. Comparing with gastric normal cells GES-1, GC cells, including MKN-45, AGS, HGC27 and MKN74, had reduced abundance of miR-486-5p transcript. CCK8 and colony formation assays demonstrated that GC cell growth and proliferation were enhanced by miR-486-5p inhibitors and were suppressed by miR-486-5p mimics. miR-486-5p also suppressed cell cycle process and migration and promoted apoptosis in GC cells, as verified by propidium iodide (PI) staining, Transwell assay and PI/Annexin V staining. miR-486-5p downregulated fibroblast growth factor 9 (FGF9) through combining to its 3′untranslated region. Overexpression of FGF9 accelerated the growth and proliferation of GC cells. The expression of miR-486-5p was negatively associated with FGF9 mRNA expression in GC samples. These results revealed that miR-486-5p was a tumor suppressor in GC. Downregulation of FGF9 contributed to the role of miR-486-5p in GC.
Collapse
Affiliation(s)
- Weiwei Wei
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Chunyu Liu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Rongrong Yao
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Qingyun Tan
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Qingdong Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Hao Tian
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
4
|
Khedr MA, Abu-Zied KM, Zaghary WA, Aly AS, Shouman DN, Haffez H. Novel thienopyrimidine analogues as potential metabotropic glutamate receptors inhibitors and anticancer activity: Synthesis, In-vitro, In-silico, and SAR approaches. Bioorg Chem 2021; 109:104729. [PMID: 33676314 DOI: 10.1016/j.bioorg.2021.104729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/12/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
There is a continuous need in drug development approach for synthetic anticancer analogues with new therapeutic targets to diminish chemotherapeutic resistance of cancer cells. This study presents new group of synthetic thienopyrimidine analogues (1-9) aims as mGluR-1 inhibitors with anticancer activity. In-vitro antiproliferative assessment was carried out using viability assay against cancer cell lines (MCF-7, A-549 and PC-3) compared to WI-38 normal cell line. Analogues showed variable anticancer activity with IC50 ranging from 6.60 to 121 µg/mL with compound 7b is the most potent analogue against the three cancer cell lines (MCF-7; 6.57 ± 0.200, A-549; 6.31 ± 0.400, PC-3;7.39 ± 0.500 µg/mL) compared to Doxorubicin, 5-Flurouracil and Riluzole controls. Selected compounds were tested as mGluR-1 inhibitors in MCF-7 cell line and results revealed compound 7b induced significant reduction in extracellular glutamate release (IC50; 4.96 ± 0.700 µM) compared to other analogues and next to Riluzole (IC50; 2.80 ± 0.500 µM) of the same suggested mode of action. Furthermore, both cell cycle and apoptosis assays confirmed the potency of compound 7b for early apoptosis of MCF-7 at G2/M phase and apoptotic positive cell shift to (91.4%) compared to untreated control (19.6%) and Raptinal positive control (51.4%). On gene expression level, compound 7b induced over-expression of extrinsic (FasL, TNF-α and Casp-8), intrinsic (Cyt-C, Casp-3, Bax) apoptotic genes with down-regulation of anti-apoptotic Bcl-2 gene with boosted Bax/Bcl-2 ratio to 2.6-fold increase. Molecular docking and dynamic studies confirmed the biological potency through strong binding and stability modes of 7b where it was faster in reaching the equilibrium point and achieving the stability than Riluzole over 20 ns MD. These results suggest compound 7b as a promising mGluR inhibitory scaffold with anticancer activity that deserves further optimization and in-depth In-vivo and clinical investigations.
Collapse
Affiliation(s)
- Mohammed A Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Khadiga M Abu-Zied
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Ahmed S Aly
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | - Dina N Shouman
- Family Medicine Center, Egyptian Ministry of Health and Population, Dakahlia, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo 11795, Egypt
| |
Collapse
|
5
|
Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021; 26:506. [PMID: 33477997 PMCID: PMC7835894 DOI: 10.3390/molecules26020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt;
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
6
|
Bcl-2 Family Overexpression and Chemoresistance in Acute Myeloid Leukemia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.2478/sjecr-2018-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The family of Bcl-2 proteins is one of the most responsible for apoptosis pathway, that is a critical process to the maintenance of tissue homeostasis. Bcl-2 is an essential apoptotic regulator belonging to a family of functionally and structurally related proteins known as the Bcl-2 family. Some members of this family act as anti-apoptotic regulators, whereas others act in pro-apoptotic function. The relationship between the pro and anti-apoptotic proteins can regulate whether cells begin the apoptosis or remain its life cycle. Increasing of Bcl-2 expression has been found in some hematologic diseases, such as Acute Myeloid Leukemia (AML) and their effects on responsiveness to anticancer therapy have been recently described. Thus, this review aims to discuss apoptosis and the role of the Bcl-2 family of proteins in chemoresistance when overexpressed in patients committed with Acute Myeloid Leukemia submitted to chemotherapy treatment.
Collapse
|
7
|
Słotwiński R, Słotwińska SM. Diagnostic value of selected markers and apoptotic pathways for pancreatic cancer. Cent Eur J Immunol 2017; 41:392-403. [PMID: 28450803 PMCID: PMC5382885 DOI: 10.5114/ceji.2016.65139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer occupies the fourth place as a cause of death from cancer, and the mortality rate is similar to the number of newly detected cases. Due to the late diagnosis, only 5-6% of patients with pancreatic cancer survive for five years. Given that early diagnosis is critical for improving patients' survival rates, there is an urgent need for the discovery and validation of new biomarkers with sufficient sensitivity and specificity to help diagnose pancreatic cancer early. Detection of serum tumor markers (CA19-9, CEA, CA125 and CA242) is conducive to the early diagnosis of pancreatic cancer. The combination of miR-16, miR-196a and CA19-9 plasma level was more effective, especially in early tumor screening. Furthermore, recent studies reported that mainly miR-21, miR-155 and miR-196 were dysregulated in IPMN (intraductal papillary mucinous neoplasms) and PanIN (pancreatic intraepithelial neoplasia) lesions, suggesting their usefulness as early biomarkers of these diseases. The reduced rate of apoptosis plays a crucial role in carcinogenesis, and it is one of the most important characteristics acquired by pancreatic cancer cells, which protects them from attack by the immune system and reduces the effectiveness of pharmacological treatment. This review summarizes the data concerning the clinical utility of selected biomarkers in pancreatic cancer patients. The review mainly focuses on the genetic aspects of signaling pathway disorders associated with apoptosis in the pathogenesis and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Robert Słotwiński
- Department of Surgical Research and Transplantology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Poland
| | | |
Collapse
|
8
|
Wang RA. C1-O-02Carcinogenesis by Stem Cell Misplacement: a New Cancer Theory. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Sun L, Chua CYX, Tian W, Zhang Z, Chiao PJ, Zhang W. MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma. J Genet Genomics 2015; 42:563-577. [PMID: 26554910 DOI: 10.1016/j.jgg.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered to be the most lethal and aggressive malignancy with high mortality and poor prognosis. Their responses to current multimodal therapeutic regimens are limited. It is urgently needed to identify the molecular mechanism underlying pancreatic oncogenesis. Twelve core signaling cascades have been established critical in PDAC tumorigenesis by governing a wide variety of cellular processes. MicroRNAs (miRNAs) are aberrantly expressed in different types of tumors and play pivotal roles as post-transcriptional regulators of gene expression. Here, we will describe how miRNAs regulate different signaling pathways that contribute to pancreatic oncogenesis and progression.
Collapse
Affiliation(s)
- Longhao Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Corrine Ying Xuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston 77030, USA
| | - Weijun Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston 77030, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston 77030, USA; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
10
|
Abstract
Gene mutation's role in initiating carcinogenesis has been controversial, but it is consensually accepted that both carcinogenesis and cancer metastasis are gene-regulated processes. MTA1, a metastasis-associated protein, has been extensively researched, especially regarding its role in cancer metastasis. In this review, I try to elucidate MTA1's role in both carcinogenesis and metastasis from a different angle. I propose that MTA1 is a stress response protein that is upregulated in various stress-related situations such as heat shock, hypoxia, and ironic radiation. Cancer cells are mostly living in a stressful environment of hypoxia, lack of nutrition, and immune reaction attacks. To cope with all these stresses, MTA1 expression is upregulated, plays a role of master regulator of gene expression, and helps cancer cells to survive and migrate out of their original dwelling.
Collapse
Affiliation(s)
- Rui-An Wang
- State Key Lab for Cancer Biology, Department of Pathology, Xijing Hospital, Xi'an, China,
| |
Collapse
|