1
|
Busch A, Bleichert S, Ibrahim N, Wortmann M, Eckstein HH, Brostjan C, Wagenhäuser MU, Goergen CJ, Maegdefessel L. Translating mouse models of abdominal aortic aneurysm to the translational needs of vascular surgery. JVS Vasc Sci 2021; 2:219-234. [PMID: 34778850 PMCID: PMC8577080 DOI: 10.1016/j.jvssci.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Abdominal aortic aneurysm (AAA) is a condition that has considerable socioeconomic impact and an eventual rupture is associated with high mortality and morbidity. Despite decades of research, surgical repair remains the treatment of choice and no medical therapy is currently available. Animal models and, in particular, murine models, of AAA are a vital tool for experimental in vivo research. However, each of the different models has individual limitations and provide only partial mimicry of human disease. This narrative review addresses the translational potential of the available mouse models, highlighting unanswered questions from a clinical perspective. It is based on a thorough presentation of the available literature and more than a decade of personal experience, with most of the available models in experimental and translational AAA research. Results From all the models published, only the four inducible models, namely the angiotensin II model (AngII), the porcine pancreatic elastase perfusion model (PPE), the external periadventitial elastase application (ePPE), and the CaCl2 model have been widely used by different independent research groups. Although the angiotensin II model provides features of dissection and aneurysm formation, the PPE model shows reliable features of human AAA, especially beyond day 7 after induction, but remains technically challenging. The translational value of ePPE as a model and the combination with β-aminopropionitrile to induce rupture and intraluminal thrombus formation is promising, but warrants further mechanistic insights. Finally, the external CaCl2 application is known to produce inflammatory vascular wall thickening. Unmet translational research questions include the origin of AAA development, monitoring aneurysm growth, gender issues, and novel surgical therapies as well as novel nonsurgical therapies. Conclusion New imaging techniques, experimental therapeutic alternatives, and endovascular treatment options provide a plethora of research topics to strengthen the individual features of currently available mouse models, creating the possibility of shedding new light on translational research questions.
Collapse
Affiliation(s)
- Albert Busch
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| | - Sonja Bleichert
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Nahla Ibrahim
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus Wortmann
- Department of Vascular and Endovascular Surgery, Universitaetsklinik Heidelberg, Heidelberg, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Christine Brostjan
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus U Wagenhäuser
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Ind
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| |
Collapse
|
2
|
Raffort J, Lareyre F, Clément M, Moratal C, Jean-Baptiste E, Hassen-Khodja R, Burel-Vandenbos F, Bruneval P, Chinetti G, Mallat Z. Transforming growth factor β neutralization finely tunes macrophage phenotype in elastase-induced abdominal aortic aneurysm and is associated with an increase of arginase 1 expression in the aorta. J Vasc Surg 2019; 70:588-598.e2. [DOI: 10.1016/j.jvs.2018.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 10/27/2022]
|
3
|
Jahangirfard R, Shalizar-Jalali A, Shahrooz R, Najafi G, Minas N. Anatomical and cytohistological study of the pituitary gland in adult turkey. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:159-163. [PMID: 31338150 PMCID: PMC6626652 DOI: 10.30466/vrf.2019.80365.2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/22/2018] [Indexed: 11/02/2022]
Abstract
In order to conduct this study, eight adult turkey heads were obtained. Pituitary glands were harvested following cranial bones removal and examined morphologically and anatomically as well as topographically. Then, tissue sections were prepared and stained using Hematoxylin and Eosin, Alcian blue, orange G and periodic acid-Schiff staining techniques. The results showed that turkey pituitary gland as a pea-sized structure is located in the ventral part of the cerebrum and composed of adenohypophysis and neurohypophysis parts. Moreover, histological analyses revealed that sinusoids are well-developed at the distal part of the adenohypophysis and irregular masses of endocrine cells exist among them. Distributions of basophilic cells in the distal part of adenohypophysis were significantly higher than those of other endocrine cells, while the acidophilic cells had the lowest distribution. Lower and higher numbers of chromophobe cells were also found compared to those of basophilic and acidophilic cells, respectively. These findings were mostly similar to the other birds' pituitary gland anatomical and histological features, but there were also differences in cellular elements distributions along with infundibular cavity topography.
Collapse
Affiliation(s)
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | | | | | |
Collapse
|
4
|
Balistreri CR, Ruvolo G, Lio D, Madonna R. Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature". J Mol Cell Cardiol 2017; 110:38-53. [PMID: 28668304 DOI: 10.1016/j.yjmcc.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
Recent advances in the field of innate immunity have revealed a complex role of innate immune signaling pathways in both tissue homeostasis and disease. Among them, the Toll-like receptor 4 (TLR-4) pathways has been linked to various pathophysiological conditions, such as cardiovascular diseases (CVDs). This has been interrogated by developing multiple laboratory tools that have shown in animal models and clinical conditions, the involvement of the TLR-4 signaling pathway in the pathophysiology of different CVDs, such as atherosclerosis, ischemic heart disease, heart failure, ischemia-reperfusion injury and aorta aneurysm. Among these, aorta aneurysm, a very complex pathological condition with uncertain etiology and fatal complications (i.e. dissection and rupture), has been associated with the occurrence of high risk cardiovascular conditions, including thrombosis and embolism. In this review, we discuss the possible role of TLR-4 signaling pathway in the development of aorta aneurysm, considering the emerging evidence from ongoing investigations. Our message is that emphasizing the role of TLR-4 signaling pathway in aorta aneurysm may serve as a starting point for future studies, leading to a better understanding of the pathophysiological basis and perhaps the effective treatment of this difficult human disease.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Rosalinda Madonna
- Heart Failure Research, Texas Heart Institute, St. Luke's Episcopal Hospital, Houston, TX, United States; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, TX, United States; Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences "G. D'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
5
|
Jansen CHP, Reimann C, Brangsch J, Botnar RM, Makowski MR. In vivo MR-angiography for the assessment of aortic aneurysms in an experimental mouse model on a clinical MRI scanner: Comparison with high-frequency ultrasound and histology. PLoS One 2017; 12:e0178682. [PMID: 28582441 PMCID: PMC5459432 DOI: 10.1371/journal.pone.0178682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MR-angiography currently represents one of the clinical reference-standards for the assessment of aortic-dimensions. For experimental research in mice, dedicated preclinical high-field MRI scanners are used in most studies. This type of MRI scanner is not available in most institutions. The aim of this study was to evaluate the potential of MR-angiography performed on a clinical MR scanner for the assessment of aortic aneurysms in an experimental mouse model, compared to a preclinical high-resolution ultrasound imaging system and histopathology. METHODS All in vivo MR imaging was performed with a clinical 3T MRI system (Philips Achieva) equipped with a clinical gradient system in combination with a single-loop surface-coil (47 mm). All MR sequences were based on clinically used sequences. For ultrasound, a dedicated preclinical high-resolution system (30 MHz linear transducer, Vevo770, VisualSonics) was used. All imaging was performed with an ApoE knockout mouse-model for aortic aneurysms. Histopathology was performed as reference-standard at all stages of aneurysm development. RESULTS MR-angiography on a clinical 3T system enabled the clear visualization of the aortic lumen and aneurysmal dilation at different stages of aneurysm development. A close correlation (R2 = 0.98; p < 0.001) with histological area measurements was found. Additionally, a good agreement between MR and ultrasound area measurements in systole (R2 = 0.91; p < 0.001) and diastole (R2 = 0.94; p < 0.001) were measured. Regarding interobserver reproducibility, MRI measurements yielded a smaller 95% confidence interval and a closer interreader correlation compared to ultrasound measurements (-0.37-0.46; R2 = 0.97 vs. -0.78-0.88; R2 = 0.87). CONCLUSION This study demonstrates that MR-angiography, performed on a clinical 3T MR scanner, enables the reliable detection and quantification of the aortic dilatation at different stages of aneurysm development in an experimental mouse model.
Collapse
Affiliation(s)
- Christian H. P. Jansen
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | | | | | - René M. Botnar
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- BHF Centre of Excellence, King’s College London, London, United Kingdom
- Wellcome Trust and EPSRC Medical Engineering Center, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre, King’s College London, London, United Kingdom
- School of Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Marcus R. Makowski
- King’s College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
- Department of Radiology, Charite, Berlin, Germany
- BHF Centre of Excellence, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Raffort J, Lareyre F, Clement M, Mallat Z. Micro-RNAs in abdominal aortic aneurysms: insights from animal models and relevance to human disease. Cardiovasc Res 2016; 110:165-77. [PMID: 26965051 DOI: 10.1093/cvr/cvw046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/28/2016] [Indexed: 01/09/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a major health concern and may be associated with high rates of mortality linked to acute complications. Diagnosis and treatment are, respectively, based on imaging and surgical techniques. Drug-based therapies are still mostly ineffective, which highlight a real unmet need. Major pathophysiological mechanisms leading to aneurysm formation involve inflammatory processes, degradation of the extracellular matrix, and loss of smooth muscle cells. However, the precise cellular and molecular pathways are still poorly understood. Recently, microRNAs have emerged as major intracellular players in a wide range of biological processes, and their stability in extracellular medium within microvesicles has led to propose them as mediators of intercellular crosstalk and as potential biomarkers and therapeutic targets in a variety of disease settings. To date, several studies have been performed to address the involvement of micro-RNAs (miRs) in aneurysm formation and complications. Here, we discuss the roles and implications of miRs in animal models and their relevance to human AAA.
Collapse
Affiliation(s)
- Juliette Raffort
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB20 SZ, UK University of Nice-Sophia Antipolis, Medical School, Nice 06107, France INSERM U1081, CNRS UMR7284, IRCAN, Nice, France Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
| | - Fabien Lareyre
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB20 SZ, UK University of Nice-Sophia Antipolis, Medical School, Nice 06107, France INSERM U1081, CNRS UMR7284, IRCAN, Nice, France Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Marc Clement
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB20 SZ, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB20 SZ, UK Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Paris 75015, France
| |
Collapse
|