1
|
Lisboa HM, Nascimento A, Arruda A, Sarinho A, Lima J, Batista L, Dantas MF, Andrade R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 2024; 13:1846. [PMID: 38928788 PMCID: PMC11203160 DOI: 10.3390/foods13121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The present review highlights the potential of insect-based proteins to address the growing need for sustainable and secure food systems. The key findings suggest that edible insects offer a viable and environmentally friendly alternative to traditional livestock, requiring significantly less land, water, and feed while emitting lower levels of greenhouse gases. Insect farming can also reduce waste and recycle nutrients, supporting circular economy models. Nutritionally, insects provide high-quality protein, essential amino acids, and beneficial fats, making them valuable to human diets. Despite these benefits, this review emphasizes the need for comprehensive regulatory frameworks to ensure food safety, manage potential allergenicity, and mitigate contamination risks from pathogens and environmental toxins. Additionally, developing innovative processing technologies can enhance the palatability and marketability of insect-based products, promoting consumer acceptance. This review concludes that with appropriate regulatory support and technological advancements, insect-based proteins have the potential to significantly contribute to global food security and sustainability efforts.
Collapse
Affiliation(s)
- Hugo M. Lisboa
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58429-900, PB, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Nsevolo Miankeba P, Taofic A, Kiatoko N, Mutiaka K, Francis F, Caparros Megido R. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. INSECTS 2022; 13:994. [PMID: 36354818 PMCID: PMC9693131 DOI: 10.3390/insects13110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This study analyzed the protein content of ten edible insect species (using the Dumas method), then focused on the amino acid (AA) profiles of the six major commercially relevant species using HPLC (high-pressure (or performance) liquid chromatography). The protein contents varied significantly from 46.1% to 52.9% (dry matter); the Orthoptera representative yielding both the highest protein content and the highest values in three essential amino acids (EAAs). Regarding Lepidoptera species, the protein content of Saturniidae varied more than for Notodontidae. Imbrasia ertli gave the best example of a species that could be suggested for dietary supplementation of cereal-based diets, as the sample contained the highest values in five EAAs and for the EAA index. Furthermore, first-limiting AAs in the selected insects have also been pointed out (based on a species-specific AA score), supporting that the real benefit from eating insects is correlated to a varied diet. Additionally, preliminary insights into AA distribution patterns according to taxa provided three clusters based on protein quality and should be completed further to help tailor prescriptions of dietary diets. Since the AA composition of the selected insects was close to the FAO/WHO EAA requirement pattern for preschool children and met the requirements of 40% EAAs with high ratio EAAs/NEAAs, the current study endorses reports of edible insects as nutrient-rich and sustainable protein sources.
Collapse
Affiliation(s)
- Papy Nsevolo Miankeba
- Faculté des Sciences Agronomiques, Université Pédagogique Nationale (UPN), Kinshasa 8815, Democratic Republic of the Congo
- Faculté des Sciences Agronomiques, Université de Kinshasa (UNIKIN), Kinshasa 15373, Democratic Republic of the Congo
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| | - Alabi Taofic
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| | - Nkoba Kiatoko
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Kambashi Mutiaka
- Faculté des Sciences Agronomiques, Université de Kinshasa (UNIKIN), Kinshasa 15373, Democratic Republic of the Congo
| | - Frédéric Francis
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Boué G, Ververis E, Niforou A, Federighi M, Pires SM, Poulsen M, Thomsen ST, Naska A. Risk-Benefit assessment of foods: Development of a methodological framework for the harmonized selection of nutritional, microbiological, and toxicological components. Front Nutr 2022; 9:951369. [PMID: 36386902 PMCID: PMC9665408 DOI: 10.3389/fnut.2022.951369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 10/22/2024] Open
Abstract
Investigating the impact of diet on public health using risk-benefit assessment (RBA) methods that simultaneously consider both beneficial and adverse health outcomes could be useful for shaping dietary policies and guidelines. In the field of food safety and nutrition, RBA is a relatively new approach facing methodological challenges and being subject to further developments. One of the methodological aspects calling for improvement is the selection of components to be considered in the assessment, currently based mainly on non-harmonized unstandardized experts' judgment. Our aim was to develop a harmonized, transparent, and documented methodological framework for selecting nutritional, microbiological, and toxicological RBA components. The approach was developed under the Novel foods as red meat replacers-an insight using Risk-Benefit Assessment methods (NovRBA) case study, which attempted to estimate the overall health impact of replacing red meat with an edible insect species, Acheta domesticus. Starting from the compositional profiles of both food items, we created a "long list" of food components. By subsequently applying a series of predefined criteria, we proceeded from the "long" to the "short list." These criteria were established based on the occurrence and severity of health outcomes related to these components. For nutrition and microbiology, the occurrence of health outcomes was evaluated considering the presence of a component in the raw material, as well as the effect of processing on the respective component. Regarding toxicology, the presence and exposure relative to reference doses and the contribution to total exposure were considered. Severity was graded with the potential contribution to the background diet alongside bioavailability aspects (nutrition), the disability-adjusted life years per case of illness of each hazard (microbiology), and disease incidence in the population, potential fatality, and lifelong disability (toxicology). To develop the "final list" of components, the "short list" was refined by considering the availability and quality of data for a feasible inclusion in the RBA model. The methodology developed can be broadly used in food RBA, to guide and reinforce a harmonized selection of nutritional, microbiological, and toxicological components and will contribute to facilitating RBA implementation, enabling the generation of transparent, robust, and comparable outcomes.
Collapse
Affiliation(s)
| | - Ermolaos Ververis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- European Food Safety Authority, Parma, Italy
| | - Aikaterini Niforou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michel Federighi
- Oniris, INRAE, SECALIM, Nantes, France
- ENVA, ANSES, LSA, Maisons-Alfort, France
| | - Sara M. Pires
- Risk Benefit Research Group, National Food Institute/DTU, Lyngby, Denmark
| | - Morten Poulsen
- Risk Benefit Research Group, National Food Institute/DTU, Lyngby, Denmark
| | - Sofie T. Thomsen
- Risk Benefit Research Group, National Food Institute/DTU, Lyngby, Denmark
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
4
|
Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. INSECTS 2022; 13:insects13050446. [PMID: 35621781 PMCID: PMC9147295 DOI: 10.3390/insects13050446] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Insects have been identified as an alternative in the development of food systems and as a response to the growing demand for protein in the world. Edible insects have been recognized as an important innovation in the food sector. In the past, insects have been consumed in many cultures, and they are presently being introduced to Europe as a novel food and livestock. This article comprehensively reviews the use of edible insects in relation to their breeding, production technology, legal and socio-economic aspects. The role of food safety and legislation in implementing insects as food and feed is discussed. Moreover, the article introduces the breeding of edible insects as a developing and future-oriented business sector. In conclusion, the consumption of insects by humans and animals can significantly contribute to better diversification and security of the global food chain. The low acceptance of insect-based foods, in particular in Western societies, is an important problem that has been identified in this article. Consumer acceptance of insects as a rich source of nutrients is required for the further development of the sector. Consumer education and appropriate marketing strategies are required to promote the growth of the edible insect industry. Abstract Insects are increasingly being considered as an attractive source of protein that can cater to the growing demand for food around the world and promote the development of sustainable food systems. Commercial insect farms have been established in various countries, mainly in Asia, but in Europe, edible insects have not yet emerged as a viable alternative to traditional plant- and animal-based sources of protein. In this paper, we present an interdisciplinary overview of the technological aspects of edible insect farming in the context of the EU regulations and marketing. Based on a review of the literature, we have concluded that edible insect farming can be a viable business sector that significantly contributes to the overall sustainability of food systems if the appropriate regulations are introduced and food safety standards are guaranteed. However, the success of the edible insect industry also requires consumer acceptance of entomophagy, which is rather low in Western societies. Therefore, targeted marketing strategies are indispensable to support the implementation of edible insect programs.
Collapse
|
5
|
Liceaga AM, Aguilar-Toalá JE, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Insects as an Alternative Protein Source. Annu Rev Food Sci Technol 2021; 13:19-34. [PMID: 34699254 DOI: 10.1146/annurev-food-052720-112443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent COVID-19 pandemic drastically affected food supply chains worldwide, showing the vulnerability of food security. Efforts to develop alternative protein sources that are sustainable and can help alleviate global food shortage problems should be prioritized. Insects have been part of our diet for thousands of years and still are today, and market trends show a global increase in the number of food-grade insect producers. The global market for edible insects has been forecasted to reach US$8 billion by the year 2030. Insects are highly nutritious and have bioactive peptides with potential therapeutic effects. This review provides an overview of the consumption of insects from ancient to modern times, discusses the rationale for using insects as alternative protein sources, and presents a summary of the major insects consumed worldwide as well as a brief description of the traditional and novel technologies currently used to process insects and/or extract their nutritional components. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - José Eleazar Aguilar-Toalá
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, México
| | - Aarón F González-Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, México
| |
Collapse
|
6
|
Bessa LW, Pieterse E, Marais J, Dhanani K, Hoffman LC. Food Safety of Consuming Black Soldier Fly ( Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods 2021; 10:1934. [PMID: 34441710 PMCID: PMC8394208 DOI: 10.3390/foods10081934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) are a promising, sustainable source of nutrients, however, there is limited knowledge regarding the food safety of consuming BSFL. This study determined the safety of consuming BSFL for direct human consumption in terms of microbial, heavy metal and allergen content. Microbial counts were determined using ISO (International Organization for Standardization) methods, heavy metals were determined using inductively coupled plasma mass spectrometry and allergens were determined via Orbitrap mass spectrometry and ELISA (enzyme-linked immunosorbent assay) kits. Feed and killing method influenced the presence of Bacillus cereus (p = 0.011), and only the killing method influenced Escherichia coli (p < 0.00) and total viable count (TVC) (p < 0.00). Blanching resulted in a 3-log reduction in E. coli and a 3.4 log reduction in the TVC counts. Salmonella spp. and Listeria spp. were not detected in the BSFL samples. Heavy metals were detected although they were below maximum legal limits. Cross-reactive allergens, tropomyosin and arginine kinase, were detected in the BSFL samples, although the clinical significance requires research. The feed fed to the BSFL and blanching were found to influence the safety of consuming BSFL, highlighting the importance of incorporating sufficient decontamination steps, such as blanching, to ensure food safety.
Collapse
Affiliation(s)
- Leah W. Bessa
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa; (L.W.B.); (E.P.)
| | - Elsje Pieterse
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa; (L.W.B.); (E.P.)
| | - Jeannine Marais
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Karim Dhanani
- The Woodmill Office 11, 1st Floor, Vredenburg Road, Stellenbosch 7602, South Africa;
| | - Louwrens C. Hoffman
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa; (L.W.B.); (E.P.)
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
7
|
Gałęcki R, Zielonka Ł, Zasȩpa M, Gołȩbiowska J, Bakuła T. Potential Utilization of Edible Insects as an Alternative Source of Protein in Animal Diets in Poland. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.675796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selection of high-protein raw materials that could be utilized in the production of animal feed is limited in Poland. The aim of this study was to analyze the needs and possibilities associated with the utilization of insect protein in animal nutrition in Poland. In the future, insects could become an effective solution to meeting the nutritional requirements of a growing population. Insect protein is already used in the production of fish feed in the European Union (EU). Legislative decisions on the introduction of this alternative feed source have to be based on the results of studies investigating the safety of insect protein for farmed animals. Diets containing insect protein and their influence on animals need to be thoroughly analyzed. In the future, insect farming could become a novel branch of agriculture, and it could create new opportunities for Polish farmers who were affected by the African swine fever (ASF) virus. Insect farms could create new jobs, promote innovative business development, and increase food and feed production. Entomophagy is a new and controversial concept for Polish consumers, but in the future, it could offer a viable solution to feeding the world's growing population.
Collapse
|
8
|
Galal FH, Seufi AM. Molecular characterization of cultivable bacteria associated with adult Schistocerca gregaria, using 16S rRNA. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1760537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fatma H. Galal
- Biology Department, College of Science, Jouf University, Sakaka, KSA
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - AlaaEddeen M. Seufi
- Department of Basic Sciences, Deanship of Common First Year, Jouf University, Sakaka, KSA
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Food Wastes as a Potential new Source for Edible Insect Mass Production for Food and Feed: A review. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030081] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
About one-third of the food produced annually worldwide ends up as waste. A minor part of this waste is used for biofuel and compost production, but most is landfilled, causing environmental damage. Mass production of edible insects for human food and livestock feed seems a sustainable solution to meet demand for animal-based protein, which is expected to increase due to rapid global population growth. The aim of this review was to compile up-to-date information on mass rearing of edible insects for food and feed based on food wastes. The use and the potential role of the fermentation process in edible insect mass production and the potential impact of this rearing process in achieving an environmentally friendly and sustainable food industry was also assessed. Food waste comprises a huge nutrient stock that could be valorized to feed nutritionally flexible edible insects. Artificial diets based on food by-products for black soldier fly, house fly, mealworm, and house cricket mass production have already been tested with promising results. The use of fermentation and fermentation by-products can contribute to this process and future research is proposed towards this direction. Part of the sustainability of the food sector could be based on the valorization of food waste for edible insect mass production. Further research on functional properties of reared edible insects, standardization of edible insects rearing techniques, safety control aspects, and life cycle assessments is needed for an insect-based food industry.
Collapse
|