1
|
Deng XH, Wang JS, Chen Z, Zeng WK, Peng HM, Yan WT, Jiang C, Song B, Li WP, Zhang ZZ. Incomplete Histologic Healing and Diminished Biomechanical Strength of Meniscus-Bone Interface After Medial Meniscus Posterior Root Transosseous Repair in a Goat Model. Arthroscopy 2024:S0749-8063(24)00552-8. [PMID: 39128679 DOI: 10.1016/j.arthro.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To enhance the understanding of histologic healing after repairing medial meniscal posterior root tears (MMPRTs) at an early stage, utilizing a goat model. METHODS Eighteen adult goats, totaling 36 knee joints, were allocated into 3 groups (n = 12): sham group (Sham), root tear group (RT), and root tear with transosseous suture group (RTS). At 12- and 24-week intervals postsurgery, all the knees were harvested for imaging, macroscopic, histologic, and biomechanical assessments. RESULTS The intact root served as a meniscus-bone interface that connected the tibial and circular fibers of the meniscus with a bony insertion and a root-meniscus transition. A direct fibrous connection was displayed at the bony insertion proximal to the synovium in the RTS group, while the remaining regions of the root displayed indirect fibrous healing. The healing in the RT group was disjointed and reminiscent of scar tissue. The RTS group exhibited a more pronounced coronal extrusion compared to the Sham group (0.42 ± 0.09 vs 0.19 ± 0.02, P = .0012) but was improved relative to that of the RT group (0.49 ± 0.02, P = .0028). The failure load and stiffness of the RTS group were notably higher than those of the RT group, with a strength of 42.67% and a stiffness of 83.75% of the intact root. All the samples ruptured at the root-meniscus transitions. CONCLUSIONS The incomplete healing may be attributed to the histologic factors underlying the low healing rate and persistent medial meniscal extrusion. Notably, the region attached to the posterior cruciate ligament exhibited superior healing compared to other regions of the bony insertion in the repaired group. Conversely, the root-meniscus transition displayed discontinuity, representing a mechanical weakness in the healing process. CLINICAL RELEVANCE Modifications of bone tunnel positioning and suture placement could be undertaken in subsequent studies to enhance the healing of the root-meniscus transition.
Collapse
Affiliation(s)
- Xing-Hao Deng
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhong Chen
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wei-Ke Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hua-Ming Peng
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Chuan Jiang
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Song
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China; Department of Joint Surgery and Sports Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wei-Ping Li
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Cui P, Sun B, Dai Y, Cui T, Sun J, Shen K, Zhang L, Shi C, Wang X. Healing of the Torn Anterior Horn of Rabbit Medial Meniscus to Bone after Transtibial Pull-Out Repair and Autologous Platelet-Rich Plasma Gel Injection. Orthop Surg 2022; 15:617-627. [PMID: 36573287 PMCID: PMC9891914 DOI: 10.1111/os.13622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES The transtibial pull-out repair (TP) is a relatively new method for treating meniscal root tear; however, the clinical evaluation of its healing effect remains controversial. Due to ethical constraints and limitations of imaging techniques in humans, here we dynamically observe the healing effects of TP and TP with platelet-rich plasma gel (PRG) at the histological level using an animal model. METHODS Platelet-rich plasma (PRP) and PRG of rabbits were prepared. Platelet-derived growth factor (PDGF) and transforming growth factor-β1 (TGF-β1) levels in PRP and PRG were determined using an enzyme-linked immunosorbent assay. A rabbit model of anterior horn tear of the medial meniscus and TP surgery were created. PRG was injected between the anterior horn of the medial meniscus and the tibial tunnel. Rabbits were divided into three groups: the anterior horn tear group (Tear group), the anterior horn tear + TP group (TP group), and the anterior horn tear + TP + PRG group (TP + PRG group). The healing effect was observed dynamically using histopathological studies and biomechanical experiments. RESULTS The platelet content in PRP significantly increased to approximately 4.57 times that of whole blood. PDGF and TGF-β1 concentrations in PRG increased to 2.46 and 4.15 times those in PRP, respectively. Hematoxylin and eosin (H&E) and Masson staining showed that the number of inflammatory cells in healing tissue decreased and the collagen fibers significantly increased in TP and TP + PRG groups at 4, 8, and 12 weeks postoperatively compared to those in Tear group. Neatly arranged, interlaced, and dense collagen fibers were found between the anterior horn and bone at 12 weeks. H&E and toluidine blue staining showed that the injury to the femoral condyle cartilage was alleviated. The healing performance in TP + PRG group was better and faster than that in TP group. The maximum tensile fracture strength of the meniscus progressively increased at 8 and 12 weeks postoperatively. CONCLUSIONS Anterior horn injury of the medial meniscus in rabbits can be repaired using the TP technique, and the addition of autologous PRG to the bone tunnel promotes early healing of the meniscus and bone postoperatively. Meanwhile, both treatments can reduce the secondary damage to the cartilage due to osteoarthritis.
Collapse
Affiliation(s)
- Peng Cui
- Department of OrthopaedicsThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Bai‐hai Sun
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Ya‐feng Dai
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Tian‐yi Cui
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Jing‐lei Sun
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Ke Shen
- Department of OrthopaedicsThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lian‐shan Zhang
- Department of PathologyHebei Medical UniversityShijiazhuangChina
| | - Chen‐xia Shi
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Xiao‐feng Wang
- Department of OrthopaedicsThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
4
|
Park DY, Yin XY, Chung JY, Jin YJ, Kwon HJ, Lee GB, Park JH, Min BH. Circumferential Rim Augmentation Suture Around the Perimeniscal Capsule Decreases Meniscal Extrusion and Progression of Osteoarthritis in Rabbit Meniscus Root Tear Model. Am J Sports Med 2022; 50:689-698. [PMID: 35289232 DOI: 10.1177/03635465211064297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND We recently analyzed the joint capsule adjacent to the medial meniscus and found that the perimeniscal joint capsule has collagen fiber orientation similar to that of circumferential meniscal fibers, potentially playing a role in preventing extrusion. PURPOSE To analyze the meniscal extrusion prevention potential of the circumferential rim augmentation suture around the perimeniscal capsule in a rabbit root tear model and analyze the biomechanical function in a porcine cadaveric knee. STUDY DESIGN Controlled laboratory study. METHODS Rabbit medial meniscus root tear models were divided into 3 experimental groups: root tear, root tear and suture repair, and root tear and circumferential rim augmentation suture. As for the circumferential rim augmentation suture procedure, a suture was placed to circumscribe the outer rim of the medial meniscus and passed through bone tunnels located at the tibial insertion of each root. After 4 and 8 weeks, meniscal extrusion was analyzed by micro-computed tomography, gross morphology, and histologic analysis of the medial femoral cartilage. For biomechanical analysis, porcine knees were divided into groups similar to rabbit experiments. Tibiofemoral contact parameters were assessed using a pressure mapping sensor system after applying a load of 200 N on the knee joint. RESULTS The root tear and circumferential rim augmentation suture group showed less meniscal extrusion, less gap within the tear site, and less cartilage degeneration compared with other groups after 4 and 8 weeks of surgery in the rabbit root tear model. Biomechanical analysis showed the root tear and circumferential rim augmentation suture group had larger contact area and lower peak contact pressure compared with root tear and root tear and suture repair groups. CONCLUSION The circumferential rim augmentation suture reduced the degree of meniscal extrusion while restoring meniscal function, potentially preventing progression of arthritis in a rabbit root tear model and porcine knee biomechanical analysis. CLINICAL RELEVANCE The circumferential rim augmentation suture may be a novel augmentation option during root tear treatment.
Collapse
Affiliation(s)
- Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Hyeon Jae Kwon
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ga Bin Lee
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jin Ho Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Dai TY, Pan ZY, Yin F. In Vivo Studies of Mesenchymal Stem Cells in the Treatment of Meniscus Injury. Orthop Surg 2021; 13:2185-2195. [PMID: 34747566 PMCID: PMC8654668 DOI: 10.1111/os.13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
This review summarizes the literature of preclinical studies and clinical trials on the use of mesenchymal stem cells (MSCs) to treat meniscus injury and promote its repair and regeneration and provide guidance for future clinical research. Due to the special anatomical features of the meniscus, conservative or surgical treatment can hardly achieve complete physiological and histological repair. As a new method, stem cells promote meniscus regeneration in preclinical research and human preliminary research. We expect that, in the near future, in vivo injection of stem cells to promote meniscus repair can be used as a new treatment model in clinical treatment. The treatment of animal meniscus injury, and the clinical trial of human meniscus injury has begun preliminary exploration. As for the animal experiments, most models of meniscus injury are too simple, which can hardly simulate the complexity of actual meniscal tears, and since the follow-up often lasts for only 4-12 weeks, long-term results could not be observed. Lastly, animal models failed to simulate the actual stress environment faced by the meniscus, so it needs to be further studied if regenerated meniscus has similar anti-stress or anti-twist features. Despite these limitations, repair of the meniscus by MSCs has great potential in clinics. MSCs can differentiate into fibrous chondrocytes, which can possibly repair the meniscus and provide a new strategy for repairing meniscus injury.
Collapse
Affiliation(s)
- Tian-Yu Dai
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhang-Yi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM. Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 2021; 13:1005-1029. [PMID: 34567422 PMCID: PMC8422933 DOI: 10.4252/wjsc.v13.i8.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.
Collapse
Affiliation(s)
- Hye Chang Rhim
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, Seoul 08308, Seoul, South Korea
| | - Dong Won Suh
- Department of Orthopaedic Surgery, Barunsesang Hospital, Seongnam 13497, South Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| |
Collapse
|
7
|
Van Genechten W, Verdonk P, Krych AJ, Saris DB. Biologic Adjuvants in Meniscus Repair: A Review of Current Translational and Clinical Evidence. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Carlson Strother CR, Saris DBF, Verdonk P, Nakamura N, Krych AJ. Biological augmentation to promote meniscus repair: from basic science to clinic application—state of the art. J ISAKOS 2020. [DOI: 10.1136/jisakos-2019-000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Twomey-Kozak J, Jayasuriya CT. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin Sports Med 2020; 39:125-163. [PMID: 31767102 DOI: 10.1016/j.csm.2019.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meniscus injuries are among the most common athletic injuries and result in functional impairment in the knee. Repair is crucial for pain relief and prevention of degenerative joint diseases like osteoarthritis. Current treatments, however, do not produce long-term improvements. Thus, recent research has been investigating new therapeutic options for regenerating injured meniscal tissue. This review comprehensively details the current methodologies being explored in the basic sciences to stimulate better meniscus injury repair. Furthermore, it describes how these preclinical strategies may improve current paradigms of how meniscal injuries are clinically treated through a unique and alternative perspective to traditional clinical methodology.
Collapse
Affiliation(s)
- John Twomey-Kozak
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Bilgen B, Jayasuriya CT, Owens BD. Current Concepts in Meniscus Tissue Engineering and Repair. Adv Healthc Mater 2018; 7:e1701407. [PMID: 29542287 PMCID: PMC6176857 DOI: 10.1002/adhm.201701407] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The meniscus is the most commonly injured structure in the human knee. Meniscus deficiency has been shown to lead to advanced osteoarthritis (OA) due to abnormal mechanical forces, and replacement strategies for this structure have lagged behind other tissue engineering endeavors. The challenges include the complex 3D structure with individualized size parameters, the significant compressive, tensile and shear loads encountered, and the poor blood supply. In this progress report, a review of the current clinical treatments for different types of meniscal injury is provided. The state-of-the-art research in cellular therapies and novel cell sources for these therapies is discussed. The clinically available cell-free biomaterial implants and the current progress on cell-free biomaterial implants are reviewed. Cell-based tissue engineering strategies for the repair and replacement of meniscus are presented, and the current challenges are identified. Tissue-engineered meniscal biocomposite implants may provide an alternative solution for the treatment of meniscal injury to prevent OA in the long run, because of the limitations of the existing therapies.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
- Providence VA Medical Center, Providence, RI, 02908, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| |
Collapse
|
11
|
Novel technique for repairing posterior medial meniscus root tears using porcine knees and biomechanical study. PLoS One 2018; 13:e0192027. [PMID: 29408892 PMCID: PMC5800675 DOI: 10.1371/journal.pone.0192027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Transtibial pullout suture (TPS) repair of posterior medial meniscus root (PMMR) tears was shown to achieve good clinical outcomes. The purpose of this study was to compare biomechanically, a novel technique designed to repair PMMR tears using tendon graft (TG) and conventional TPS repair. Twelve porcine tibiae (n = 6 each) TG group: flexor digitorum profundus tendon was passed through an incision in the root area, created 5 mm postero-medially along the edge of the attachment area. TPS group: a modified Mason-Allen suture was created using no. 2 FiberWire. The tendon grafts and sutures were threaded through the bone tunnel and then fixed to the anterolateral cortex of the tibia. The two groups underwent cyclic loading followed by a load-to-failure test. Displacements of the constructs after 100, 500, and 1000 loading cycles, and the maximum load, stiffness, and elongation at failure were recorded. The TG technique had significantly lower elongation and higher stiffness compared with the TPS. The maximum load of the TG group was significantly lower than that of the TPS group. Failure modes for all specimens were caused by the suture or graft cutting through the meniscus. Lesser elongation and higher stiffness of the constructs in TG technique over those in the standard TPS technique might be beneficial for postoperative biological healing between the meniscus and tibial plateau. However, a slower rehabilitation program might be necessary due to its relatively lower maximum failure load.
Collapse
|
12
|
Korpershoek JV, de Windt TS, Hagmeijer MH, Vonk LA, Saris DBF. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies. Orthop J Sports Med 2017; 5:2325967117690131. [PMID: 28321424 PMCID: PMC5347439 DOI: 10.1177/2325967117690131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. Conclusion: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential.
Collapse
Affiliation(s)
- Jasmijn V Korpershoek
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michella H Hagmeijer
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
13
|
Riester SM, Denbeigh JM, Lin Y, Jones DL, de Mooij T, Lewallen EA, Nie H, Paradise CR, Radel DJ, Dudakovic A, Camilleri ET, Larson DR, Qu W, Krych AJ, Frick MA, Im H, Dietz AB, Smith J, van Wijnen AJ. Safety Studies for Use of Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells in a Rabbit Model for Osteoarthritis to Support a Phase I Clinical Trial. Stem Cells Transl Med 2016; 6:910-922. [PMID: 28297568 PMCID: PMC5442773 DOI: 10.5966/sctm.2016-0097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/01/2016] [Indexed: 01/11/2023] Open
Abstract
Adipose‐derived mesenchymal stem cells (AMSCs) offer potential as a therapeutic option for clinical applications in musculoskeletal regenerative medicine because of their immunomodulatory functions and capacity for trilineage differentiation. In preparation for a phase I clinical trial using AMSCs to treat patients with osteoarthritis, we carried out preclinical studies to assess the safety of human AMSCs within the intra‐articular joint space. Culture‐expanded human AMSCs grown in human platelet‐lysate were delivered via intra‐articular injections into normal healthy rabbit knees and knees at risk for the development of osteoarthritis after bilateral medial anterior hemimeniscectomy. Treatment outcomes and safety were evaluated by assessing the general health, function, and behavior of the animals. Joint tissues were analyzed by x‐ray, magnetic resonance imaging, and histopathology. Intra‐articular AMSC therapy was well tolerated in this study. We did not observe adverse systemic reactions, nor did we find evidence of damage to intra‐articular joint tissues. Thus, the data generated in this study show a favorable safety profile for AMSCs within the joint space in support of a phase I clinical trial evaluating the clinical utility of AMSCs to treat osteoarthritis. Stem Cells Translational Medicine2017;6:910–922
Collapse
Affiliation(s)
- Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet M. Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yang Lin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Dakota L. Jones
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering and Physiology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA
| | - Tristan de Mooij
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric A. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hai Nie
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher R. Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Darcie J. Radel
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily T. Camilleri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dirk R. Larson
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J. Krych
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew A. Frick
- Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hee‐Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Section of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Allan B. Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jay Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anatomy, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering and Physiology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
|
15
|
Moran CJ, Busilacchi A, Lee CA, Athanasiou KA, Verdonk PC. Biological augmentation and tissue engineering approaches in meniscus surgery. Arthroscopy 2015; 31:944-55. [PMID: 25687715 DOI: 10.1016/j.arthro.2014.11.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. METHODS A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. RESULTS Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and biochemical cues in this process, however, and it is hoped that this may lead to improvements in this strategy. CONCLUSIONS There appears to be significant potential for biological augmentation and tissue engineering strategies in meniscus surgery to enhance options for repair and replacement. However, there are still relatively few clinical studies being reported in this regard. There is a strong need for improved translational activities and infrastructure to link the large amounts of in vitro and preclinical biological and tissue engineering data to clinical application. LEVEL OF EVIDENCE Level IV, systematic review of Level I-IV studies.
Collapse
Affiliation(s)
- Cathal J Moran
- Sports Surgery Clinic and Trinity College Dublin, Dublin, Ireland.
| | - Alberto Busilacchi
- Clinical Orthopaedics, Università Politecnica delle Marche, Ancona, Italy
| | - Cassandra A Lee
- Departments of Orthopaedic Surgery & Biomedical Engineering, University of California, Davis, California, U.S.A
| | - Kyriacos A Athanasiou
- Departments of Orthopaedic Surgery & Biomedical Engineering, University of California, Davis, California, U.S.A
| | | |
Collapse
|
16
|
Ahn JH, Kwon OJ, Nam TS. Arthroscopic repair of horizontal meniscal cleavage tears with marrow-stimulating technique. Arthroscopy 2015; 31:92-8. [PMID: 25242513 DOI: 10.1016/j.arthro.2014.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate patients after arthroscopic repair of meniscal horizontal tears with a marrow-stimulating technique through clinical signs and second-look arthroscopy. METHODS We retrospectively reviewed a consecutive series of 32 meniscal repairs with horizontal cleavage tears and evaluated them through clinical assessment and second-look arthroscopic examinations. Arthroscopic meniscal repair and a marrow-stimulating technique were performed. Functional outcomes were evaluated using the visual analog scale (VAS) pain score, Lysholm knee scoring scale, and Tegner activity scale. Assessment of meniscal healing was evaluated clinically by the presence of meniscal signs; second-look arthroscopy was performed in 11 patients. Correlation between chronicity of a meniscal lesion (time from initial symptom [TFIS]) and meniscal healing was evaluated. RESULTS The mean follow-up period was 45.6 ± 13.9 months. Improvements in mean VAS scores from 6.7 to 1.9 (P < .001) were observed. The Lysholm score increased from 48.0 ± 14.4 to 92.0 ± 6.3 (P < .001). The Tegner activity score increased from 3.3 ± 1.1 to 6.8 ± 0.8 (P < .001). At the last follow-up, 29 of 32 patients (91%) were evaluated as healing in the clinical assessment. Of the 11 patients who underwent second-look arthroscopy, 8 (73%) showed complete healing, 2 (18%) had incomplete healing, and 1 (9%) failed to heal. Correlation between TFIS and meniscal healing was clinically significant (P = .001) but arthroscopically insignificant (P = .085) on second-look arthroscopy. CONCLUSIONS The meniscal repair procedure for horizontal cleavage tears in the present study suggests an alternative treatment option to approach the treatment of meniscal tears extending into the avascular zone and degenerative tissue. The marrow-stimulating technique using a cannulated reamer can be considered as an alternative method for the augmentation of meniscal healing. LEVEL OF EVIDENCE Level IV, therapeutic case series.
Collapse
Affiliation(s)
- Ji-Hyun Ahn
- Department of Orthopedic Surgery, Dongguk University Ilsan Hospital, Gyeonggi-do
| | - Oh-Jin Kwon
- Department of Orthopedic Surgery, Dongguk University Ilsan Hospital, Gyeonggi-do
| | - Tae-Seok Nam
- Department of Orthopedic Surgery, Hyun-Myoung Medical Center, Seoul, Korea.
| |
Collapse
|