1
|
Wang H, Liu X, Zhang Z. Approaches for electroplating sludge treatment and disposal technology: Reduction, pretreatment and reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119535. [PMID: 37979382 DOI: 10.1016/j.jenvman.2023.119535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
Electroplating sludge (ES) has become an obstacle to the sustainable development of the electroplating industry. Electroplating sludge has a large storage capacity, with a high concentration of soluble pollutants (heavy metals), which has great potential to harm the local ecosystems and human health. Although much research has been done in this area, there seems to be no mature and stable solution. Therefore, the latest technologies for the reduction, pretreatment and reuse of electroplating sludge are emphatically introduced based on the analysis of the characteristics of electroplating sludge and its impact on the ecological environment. The factors hindering the treatment and disposal of electroplating sludge are pointed out, and reasonable and feasible suggestions to solve this problem are proposed. The solidification and removal mechanism of heavy metals in electroplating sludge is emphatically analyzed. The physicochemical and separation processes of heavy metals, as well as thermal treatment technique are discussed. Finally, it is proposed to establish a database of the physicochemical properties and elemental content of electroplating sludge to achieve its systematic treatment and digestion. We hope that this paper can help solve the problem of electroplating sludge and promote the sustainable development of the electroplating industry.
Collapse
Affiliation(s)
- Huimin Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoming Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zengqi Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Qu Z, Chen Y, Chen Y, Zhu S, Liu J, Ren H, Su T, Huo M. Efficient separation of impurities Fe/Al/Ca and recovery of Zn from electroplating sludge using glucose as reductant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165202. [PMID: 37392894 DOI: 10.1016/j.scitotenv.2023.165202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Electroplating sludge (ES), a hazardous waste containing heavy metals and Fe/Al/Ca impurities, is conventionally disposed of in landfills. In this study, a pilot-scale vessel with an effective capacity of 20 L was applied to recycle Zn from real ES. The sludge contained 6.3 wt% Fe, 6.9 wt% Al, 2.6 wt% Si, 6.1 wt% Ca, and 17.6 wt% Zn and was treated using a four-step method. First, ES was dissolved in nitric acid after washing in a water bath at 75 °C for 3 h to produce an acidic solution with Fe, Al, Ca, and Zn concentrations of 4527.2, 3116.1, 3357.7, and 21,275 mg/L, respectively. Second, the acidic solution was added with glucose at an Mglucose/Mnitrate ratio of 0.08 and hydrothermally treated at 160 °C for 4 h. During this step, nearly 100 % Fe and 100 % Al were simultaneously removed as a mixture containing 53.1 wt% Fe2O3 and 45.7 wt% Al2O3. This process was repeated five times, during which the Fe/Al removal and Ca/Zn loss rates remained unchanged. Third, the residual solution was adjusted with sulfuric acid, and over 99 % Ca was removed as gypsum. The residual Fe, Al, Ca, and Zn concentrations were 0.44, 0.88, 52.59, and 31,177.1 mg/L, respectively. Finally, Zn in the solution was precipitated as ZnO with a concentration of 94.3 %. Economic calculations showed that each 1 t of ES processed created revenue of about $122. This is the first study of high-value metal resource recovery using real electroplating sludge at the pilot scale. This work highlights the pilot-scale application of resource utilization of real ES and provides new insights into the recycling of heavy metals from hazardous waste.
Collapse
Affiliation(s)
- Zhan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu Chen
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yusen Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Suiyi Zhu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Junzhen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ting Su
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Mingxin Huo
- Science and Technology Innovation Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|