1
|
Ochirkhuyag N, Nishitai Y, Mizuguchi S, Isano Y, Ni S, Murakami K, Shimamura M, Iida H, Ueno K, Ota H. Stretchable Gas Barrier Films Using Liquid Metal toward a Highly Deformable Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48123-48132. [PMID: 36168303 DOI: 10.1021/acsami.2c13023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly deformable batteries that are flexible and stretchable are important for the next-generation wearable devices. Several studies have focused on the stable operation and life span of batteries. On the other hand, there has been less focus on the packaging of highly deformable batteries. In wearable devices, solid-state or pouch lithium-ion batteries (LIBs) packaged in aluminum (Al)-laminated films, which protect against moisture and gas permeation, are used. Stretchable elastomer materials are used as the packaging films of highly deformable batteries; however, they are extremely permeable to gas and moisture. Therefore, a packaging film that provides high deformability along with gas and moisture barrier functionalities is required for the stable operation of highly deformable batteries used in ambient conditions. In this study, a stretchable packaging film with high gas barrier functionality is developed successfully by coating a thin layer of liquid metal onto a gold (Au)-deposited thermoplastic polyurethane film using the layer-by-layer method. The film exhibits excellent oxygen gas impermeability under mechanical strain and extremely low moisture permeability. It shows high impermeability along with high mechanical robustness. Using the proposed stretchable gas barrier film, a highly deformable LIB is assembled, which offers reliable operation in air. The operation of the highly deformable battery is analyzed by powering LEDs under mechanical deformations in ambient conditions. The proposed stretchable packaging film can potentially be used for the development of packaging films in advanced wearable electronic devices.
Collapse
Affiliation(s)
- Nyamjargal Ochirkhuyag
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuuki Nishitai
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoru Mizuguchi
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuji Isano
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Sijie Ni
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Koki Murakami
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masaki Shimamura
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiroki Iida
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiroki Ota
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
2
|
Motoyoshi R, Li S, Tsuzuki S, Ghosh A, Ueno K, Dokko K, Watanabe M. Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium-Sulfur Battery Cathodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45403-45413. [PMID: 36174225 DOI: 10.1021/acsami.2c12773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium-sulfur (Li-S) batteries can theoretically deliver high energy densities exceeding 2500 Wh kg-1. However, high sulfur loading and lean electrolyte conditions are two major requirements to enhance the actual energy density of the Li-S batteries. Herein, the use of carbon-dispersed highly concentrated electrolyte (HCE) gels with sparingly solvating characteristics as sulfur hosts in Li-S batteries is proposed as a unique approach to construct continuous electron-transport and ion-conduction paths in sulfur cathodes as well as achieve high energy density under lean-electrolyte conditions. The sol-gel behavior of carbon-dispersed sulfolane-based HCEs was investigated using phase diagrams. The sol-to-gel transition was mainly dependent on the amount of the carbonaceous material and the Li salt content. The gelation was caused by the carbonaceous-material-induced formation of an integrated network. Density functional theory (DFT) calculations revealed that the strong cation-π interactions between Li+ and the induced dipole of graphitic carbon were responsible for facilitating the dispersion of the carbonaceous material into the HCEs, thereby permitting gel formation at high Li-salt concentrations. The as-prepared carbon-dispersed sulfolane-based composite gels were employed as efficient sulfur hosts in Li-S batteries. The use of gel-type sulfur hosts eliminates the requirement for excess electrolytes and thus facilitates the practical realization of Li-S batteries under lean-electrolyte conditions. A Li-S pouch cell that achieved a high cell-energy density (up to 253 Wh kg-1) at a high sulfur loading (4.1 mg cm-2) and low electrolyte/sulfur ratio (4.2 μL mg-1) was developed. Furthermore, a Li-S polymer battery was fabricated by combining the composite gel cathode and a polymer gel electrolyte.
Collapse
Affiliation(s)
- Ryo Motoyoshi
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shanglin Li
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Seiji Tsuzuki
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Arnab Ghosh
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kaoru Dokko
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masayoshi Watanabe
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
3
|
Wang B, Liu J, Ock JY, Motoyoshi R, Li S, Ueno K, Dokko K, Tsuzuki S, Watanabe M. LiNi 0.5Mn 1.5O 4-Hybridized Gel Polymer Cathode and Gel Polymer Electrolyte Containing a Sulfolane-Based Highly Concentrated Electrolyte for the Fabrication of a 5 V Class of Flexible Lithium Batteries. ACS OMEGA 2022; 7:17732-17740. [PMID: 35664591 PMCID: PMC9161388 DOI: 10.1021/acsomega.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
The design and fabrication of lithium secondary batteries with a high energy density and shape flexibility are essential for flexible and wearable electronics. In this study, we fabricated a high-voltage (5 V class) flexible lithium polymer battery using a lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode. A LiNi0.5Mn1.5O4-hybridized gel polymer cathode (GPC) and a gel polymer electrolyte (GPE) membrane, both containing a sulfolane (SL)-based highly concentrated electrolyte (HCE), enabled the fabrication of a polymer battery by simple lamination with a metallic lithium anode, where the injection of the electrolyte solution was not required. GPC with high flexibility has a hierarchically continuous three-dimensional porous architecture, which is advantageous for forming continuous ion-conduction paths. The GPE membrane has significant ionic conductivity enough for reliable capacity delivery. Therefore, the fabricated lithium polymer pouch cells demonstrated excellent capacity retention under continuous deformation conditions. This study provides a promising strategy for the fabrication of scalable and flexible 5 V class batteries using GPC and GPE containing SL-based HCE.
Collapse
Affiliation(s)
- Binshen Wang
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Institute
of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, People’s Republic of China
| | - Jiali Liu
- Advanced
Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ji-young Ock
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ryo Motoyoshi
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shanglin Li
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhide Ueno
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced
Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kaoru Dokko
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Advanced
Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Seiji Tsuzuki
- Advanced
Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masayoshi Watanabe
- Advanced
Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|