1
|
Yaiwong P, Iamsawat K, Wiratchan S, Jumpathong W, Semakul N, Bamrungsap S, Jakmunee J, Ounnunkad K. A toluidine blue/porous organic polymer/2D MoSe 2 nanocomposite as an electrochemical signaling platform for a sensitive label-free aflatoxin B1 bioassay in some crops. Food Chem 2024; 439:138147. [PMID: 38070230 DOI: 10.1016/j.foodchem.2023.138147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
A label-free electrochemical immunosensor using a toluidine blue (TB)/porous organic polymer (POP)/two-dimensional molybdenum diselenide (2D MoSe2) nanocomposite is developed for highly sensitive detection of aflatoxin B1 (AFB1) in selected crops. A POP/2D MoSe2 composite material is employed to modify the surface of a screen-printed carbon electrode (SPCE). Subsequently, TB is adsorbed on the modified SPCE surface, and the resulting TB/POP/2D MoSe2 composite is then used to construct a biosensor. The new POP/2D MoSe2 nanocomposite offers a high surface-to-volume area and is a good electroactive and biocompatible adsorbent for loading TB probe and capture antibodies. Adsorbed TB onto the POP/2D MoSe2 nanocomposite is utilized as a redox probe for the signal amplification unit. This TB/POP/2D MoSe2 nanocomposite provides good electron transfer properties of TB redox probe, good electrical conductivity, good biocompatibility, and likable adsorption ability, thus obtaining a sufficient immobilization quantity of antibodies for the sensor construction. After immobilization of the anti-AFB1 antibody and blocking with BSA on the composite surface, the immunosensor is obtained for the detection of AFB1. Under optimum conditions, the sensor shows a linear logarithmic range of 2.5-40 ng mL-1 with a limit of detection (LOD) of 0.40 ng mL-1. The developed sensor provides several advantages in terms of simplicity, low cost, short analysis time, high selectivity, stability, and reproducibility. Additionally, the proposed immunosensor is successfully validated by the detection of AFB1 in rice, corn, and peanut samples. Utilizing the TB/POP/2D MoSe2 nanocomposite, this label-free electrochemical immunosensor demonstrates outstanding sensitivity and selectivity in detecting AFB1, making it a valuable tool for ensuring the safety of agricultural products and enhancing food security.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonluck Iamsawat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirakorn Wiratchan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Zhang S, Wu C, Zhao Z, Xu K. An Electrochemical Immunosensor Based on Chitosan-Graphene Nanosheets for Aflatoxin B1 Detection in Corn. Molecules 2024; 29:1461. [PMID: 38611741 PMCID: PMC11013039 DOI: 10.3390/molecules29071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
We reported a highly efficient electrochemical immunosensor utilizing chitosan-graphene nanosheets (CS-GNs) nanocomposites for the detection of aflatoxin B1 (AFB1) in corn samples. The CS-GNs nanocomposites, serving as a modifying layer, provide a significant specific surface area and biocompatibility, thereby enhancing both the electron transfer rate and the efficiency of antibody immobilization. The electrochemical characterization was conducted utilizing both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Moreover, the antibody concentration, pH, antibody immobilization time, and immunoreaction time, were optimized. The results showed that the current change (ΔI) before and after the immunoreaction demonstrated a strong linear relationship (R2=0.990) with the AFB1 concentration, as well as good specificity and stability. The linear range extended from 0.05 to 25 ng/mL, with a detection limit of 0.021 ng/mL (S/N=3). The immunosensor exhibited a recovery rate ranging from 97.3% to 101.4% in corn samples, showing a promising performance using an efficient method, and indicating a remarkable prospect for the detection of fungal toxins in grains.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Caizhang Wu
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Zhike Zhao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Kun Xu
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
3
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
4
|
Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 2021; 225:122006. [DOI: 10.1016/j.talanta.2020.122006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
|
5
|
Huang Y, Zhu F, Guan J, Wei W, Zou L. Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B 1 Detection. BIOSENSORS-BASEL 2020; 11:bios11010005. [PMID: 33374220 PMCID: PMC7823963 DOI: 10.3390/bios11010005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023]
Abstract
Facile detection methods for mycotoxins with high sensitivity are of great significance to prevent potential harm to humans. Herein, a label-free amperometric immunosensor based on a 3-D interconnected carbon nanofibers (CNFs) network coupled with well-dispersed Au nanoparticles (AuNPs) is proposed for the quantitative determination of aflatoxin B1 (AFB1) in wheat samples. In comparison to common carbon nanotubes (CNTs), the CNFs network derived from bacterial cellulose biomass possesses a unique hierarchically porous structure for fast electrolyte diffusion and a larger electrochemical active area, which increases the peak current of differential pulse voltammetry curves for an immunosensor. Combined with AuNPs that are incorporated into CNFs by using linear polyethyleneimine (PEI) as a soft template, the developed Au@PEI@CNFs-based immunosensor showed a good linear response to AFB1 concentrations in a wide range from 0.05 to 25 ng mL-1. The limit of detection was 0.027 ng mL-1 (S/N = 3), more than three-fold lower than that of an Au@PEI@CNTs-based sensor. The reproducibility, storage stability and selectivity of the immunosensor were proved to be satisfactory. The developed immunosensor with appropriate sensitivity and reliable accuracy can be used for the analysis of wheat samples.
Collapse
Affiliation(s)
- Yunhong Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
| | - Fei Zhu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
| | - Jinhua Guan
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (W.W.); (L.Z.)
| | - Long Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
- Correspondence: (W.W.); (L.Z.)
| |
Collapse
|
6
|
Vijayakumar A, Zhao Y, Zou J, Wang K, Lee CY, MacFarlane DR, Wang C, Wallace GG. A Self-Assembled CO 2 Reduction Electrocatalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite. CHEMSUSCHEM 2020; 13:5023-5030. [PMID: 32666707 DOI: 10.1002/cssc.202001248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Here it was demonstrated that the decoration of gold (Au) with polyaniline is an effective approach in increasing its electrocatalytic reduction of CO2 to CO. The core-shell-structured gold-polyaniline (Au-PANI) nanocomposite delivered a CO2 -to-CO conversion efficiency of 85 % with a high current density of 11.6 mA cm-2 . The polyaniline shell facilitated CO2 adsorption, and the subsequent formation of reaction intermediates on the gold core contributed to the high efficiency observed.
Collapse
Affiliation(s)
- Amruthalakshmi Vijayakumar
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Yong Zhao
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Jinshuo Zou
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Kezhong Wang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Chong-Yong Lee
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | | | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
7
|
Yan C, Wang Q, Yang Q, Wu W. Recent Advances in Aflatoxins Detection Based on Nanomaterials. NANOMATERIALS 2020; 10:nano10091626. [PMID: 32825088 PMCID: PMC7558307 DOI: 10.3390/nano10091626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/31/2022]
Abstract
Aflatoxins are the secondary metabolites of Aspergillus flavus and Aspergillus parasiticus and are highly toxic and carcinogenic, teratogenic and mutagenic. Ingestion of crops and food contaminated by aflatoxins causes extremely serious harm to human and animal health. Therefore, there is an urgent need for a selective, sensitive and simple method for the determination of aflatoxins. Due to their high performance and multipurpose characteristics, nanomaterials have been developed and applied to the monitoring of various targets, overcoming the limitations of traditional methods, which include process complexity, time-consuming and laborious methodologies and the need for expensive instruments. At the same time, nanomaterials provide general promise for the detection of aflatoxins with high sensitivity, selectivity and simplicity. This review provides an overview of recent developments in nanomaterials employed for the detection of aflatoxins. The basic aspects of aflatoxin toxicity and the significance of aflatoxin detection are also reviewed. In addition, the development of different biosensors and nanomaterials for aflatoxin detection is introduced. The current capabilities and limitations and future challenges in aflatoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- Chunlei Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
| | - Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
- Correspondence: (Q.Y.); (W.W.)
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.Y.); (W.W.)
| |
Collapse
|
8
|
El Alami El Hassani N, Bouchikhi B, El Bari N. Recent development of an electrochemical imprinted sensor for the detection of trace-level of unmetabolized aflatoxin B2 in dairy milk. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|