1
|
Goldberga I, Hung I, Sarou-Kanian V, Gervais C, Gan Z, Novák-Špačková J, Métro TX, Leroy C, Berthomieu D, van der Lee A, Bonhomme C, Laurencin D. High-Resolution 17O Solid-State NMR as a Unique Probe for Investigating Oxalate Binding Modes in Materials: The Case Study of Calcium Oxalate Biominerals. Inorg Chem 2024; 63:10179-10193. [PMID: 38729620 DOI: 10.1021/acs.inorgchem.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Oxalate ligands are found in many classes of materials, including energy storage materials and biominerals. Determining their local environments at the atomic scale is thus paramount to establishing the structure and properties of numerous phases. Here, we show that high-resolution 17O solid-state NMR is a valuable asset for investigating the structure of crystalline oxalate systems. First, an efficient 17O-enrichment procedure of oxalate ligands is demonstrated using mechanochemistry. Then, 17O-enriched oxalates were used for the synthesis of the biologically relevant calcium oxalate monohydrate (COM) phase, enabling the analysis of its structure and heat-induced phase transitions by high-resolution 17O NMR. Studies of the low-temperature COM form (LT-COM), using magnetic fields from 9.4 to 35.2 T, as well as 13C-17O MQ/D-RINEPT and 17O{1H} MQ/REDOR experiments, enabled the 8 inequivalent oxygen sites of the oxalates to be resolved, and tentatively assigned. The structural changes upon heat treatment of COM were also followed by high-resolution 17O NMR, providing new insight into the structures of the high-temperature form (HT-COM) and anhydrous calcium oxalate α-phase (α-COA), including the presence of structural disorder in the latter case. Overall, this work highlights the ease associated with 17O-enrichment of oxalate oxygens, and how it enables high-resolution solid-state NMR, for "NMR crystallography" investigations.
Collapse
Affiliation(s)
- Ieva Goldberga
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Ivan Hung
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310, United States
| | | | | | - Zhehong Gan
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310, United States
| | | | | | - César Leroy
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
2
|
Description of Stone Morphology and Crystalluria Improve Diagnosis and Care of Kidney Stone Formers. Healthcare (Basel) 2022; 11:healthcare11010002. [PMID: 36611462 PMCID: PMC9818792 DOI: 10.3390/healthcare11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Stone analysis by physical methods is critical to determine their chemical nature and to diagnose the underlying conditions affecting kidney stone formers. This analysis should be completed by a morphologic examination of stone surface and section, leading to the diagnosis of anatomical or metabolic disorders and of specific diseases. Crystalluria study, the analysis of urine crystals, provides complementary information and is extremely useful for both diagnosis and patient follow-up. This review describes briefly how these techniques may be used and in which conditions stone morphology and urine crystal description are particularly relevant for patients medical care.
Collapse
|
3
|
Bazin D. Nanomaterials in medicine: a concise review of nanomaterials intended to treat pathology, nanomaterials induced by pathology, and pathology provoked by nanomaterials. CR CHIM 2022. [DOI: 10.5802/crchim.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Bazin D, Bouderlique E, Tang E, Daudon M, Haymann JP, Frochot V, Letavernier E, Van de Perre E, Williams JC, Lingeman JE, Borondics F. Using mid infrared to perform investigations beyond the diffraction limits of microcristalline pathologies: advantages and limitation of Optical PhotoThermal IR spectroscopy. CR CHIM 2022. [DOI: 10.5802/crchim.196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Bazin D, Daudon M, Frochot V, Haymann JP, Letavernier E. Foreword to microcrystalline pathologies: combining clinical activity and fundamental research at the nanoscale. CR CHIM 2022. [DOI: 10.5802/crchim.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|