Jacob K, Faulmann C, de Caro D, Valade L. First Nanoparticles of a Conductor Based on the Organic Donor Molecule BETS: κ-(BETS)
2FeCl
4.
MATERIALS 2021;
14:ma14164444. [PMID:
34442966 PMCID:
PMC8398930 DOI:
10.3390/ma14164444]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Nanoparticles of the molecular superconductor (BETS)2FeCl4 were obtained by the electrochemical oxidation of BETS in the presence of [(C2H5)4N]FeCl4 and an amphiphilic imine (OATM), acting as a growth controlling agent. When the reaction was carried out with a molar ratio OATM/BETS of 10, roughly spherical nanoparticles exhibiting sizes in the 10–40 nm range were observed. X-ray diffraction patterns evidenced the growth of (BETS)2FeCl4 nanoparticles with the κ-type structure. The current-voltage characteristic recorded on an individual nanoparticle aggregate was fitted with a Shockley diode model. A saturation current of 1216 pA and a threshold voltage of 0.62 V were extracted from this model. This latter value was consistent with roughly half of the energy gap of the semiconducting nano-crystalline aggregate.
Collapse