1
|
Liu T, Li T, Ke S. Role of the CASZ1 transcription factor in tissue development and disease. Eur J Med Res 2023; 28:562. [PMID: 38053207 DOI: 10.1186/s40001-023-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
The zinc finger transcription factor gene, CASZ1/Castor (Castor zinc finger 1), initially identified in Drosophila, plays a critical role in neural, cardiac, and cardiovascular development, exerting a complex, multifaceted influence on cell fate and tissue morphogenesis. During neurogenesis, CASZ1 exhibits dynamic expression from early embryonic development to the perinatal period, constituting a key regulator in this process. Additionally, CASZ1 controls the transition between neurogenesis and gliomagenesis. During human cardiovascular system development, CASZ1 is essential for cardiomyocyte differentiation, cardiac morphogenesis, and vascular morphology homeostasis and formation. The deletion or inactivation of CASZ1 mutations can lead to human developmental diseases or tumors, including congenital heart disease, cardiovascular disease, and neuroblastoma. CASZ1 can be used as a biomarker for disease prevention and diagnosis as well as a prognostic indicator for cancer. This review explores the unique functions of CASZ1 in tissue morphogenesis and associated diseases, offering new insights for elucidating the molecular mechanisms underlying diseases and identifying potential therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Tiantian Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shaorui Ke
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| |
Collapse
|
2
|
Sargazi S, Mollashahi B, Sargazi S, Heidari Nia M, Saravani R, Mirinejad S, Alidadi A. Prevalence of miR146a Gene Polymorphisms in Diabetic and Non-diabetic Patients with Chronic Kidney Disease. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01229-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
GAREM1 regulates the PR interval on electrocardiograms. J Hum Genet 2017; 63:297-307. [PMID: 29273731 DOI: 10.1038/s10038-017-0367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022]
Abstract
PR interval is the period from the onset of P wave to the start of the QRS complex on electrocardiograms. A recent genomewide association study (GWAS) suggested that GAREM1 was linked to the PR interval on electrocardiograms. This study was designed to validate this correlation using additional subjects and examined the function of Garem1 in a mouse model. We analyzed the association of rs17744182, a variant in the GAREM1 locus, with the PR interval in 5646 subjects who were recruited from 2 Korean replication sets, Yangpyeong (n = 2471) and Yonsei (n = 3175), and noted a significant genomewide association by meta-analysis (P = 2.39 × 10-8). To confirm the function of Garem1 in mice, Garem1 siRNA was injected into mouse tail veins to reduce the expression of Garem1. Garem1 transcript levels declined by 53% in the atrium of the heart (P = 0.029), and Garem1-siRNA injected mice experienced a significant decrease in PR interval (43.27 ms vs. 44.89 ms in control, P = 0.007). We analyzed the expression pattern of Garem1 in the heart by immunohistology and observed specific expression of Garem1 in intracardiac ganglia. Garem1 was expressed in most neurons of the ganglion, including cholinergic and adrenergic cells. We have provided evidence that GAREM1 is involved in the PR interval of ECGs. These findings increase our understanding of the regulatory signals of heart rhythm through intracardiac ganglia of the autonomic nervous system and can be used to guide the development of a therapeutic target for heart conditions, such as atrial fibrillation.
Collapse
|
4
|
Gene Silencing and Haploinsufficiency of Csk Increase Blood Pressure. PLoS One 2016; 11:e0146841. [PMID: 26751575 PMCID: PMC4713444 DOI: 10.1371/journal.pone.0146841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/22/2015] [Indexed: 01/11/2023] Open
Abstract
Objective Recent genome-wide association studies have identified 33 human genetic loci that influence blood pressure. The 15q24 locus is one such locus that has been confirmed in Asians and Europeans. There are 21 genes in the locus within a 1-Mb boundary, but a functional link of these genes to blood pressure has not been reported. We aimed to identify a causative gene for blood pressure change in the 15q24 locus. Methods and Results CSK and ULK3 were selected as candidate genes based on eQTL analysis studies that showed the association between gene transcript levels and the lead SNP (rs1378942). Injection of siRNAs for mouse homologs Csk, Ulk3, and Cyp1a2 (negative control) showed reduced target gene mRNA levels in vivo. However, Csk siRNA only increased blood pressure while Ulk3 and Cyp1a2 siRNA did not change it. Further, blood pressure in Csk+/- heterozygotes was higher than in wild-type, consistent with what we observed in Csk siRNA-injected mice. We confirmed that haploinsufficiency of Csk increased the active form of Src in Csk+/- mice aorta. We also showed that inhibition of Src by PP2, a Src inhibitor decreased high blood pressure in Csk+/- mice and the active Src in Csk+/- mice aorta and in Csk knock-down vascular smooth muscle cells, suggesting blood pressure regulation by Csk through Src. Conclusions Our study demonstrates that Csk is a causative gene in the 15q24 locus and regulates blood pressure through Src, and these findings provide a novel therapeutic target for the treatment of hypertension.
Collapse
|
5
|
Morishita Y, Imai T, Yoshizawa H, Watanabe M, Ishibashi K, Muto S, Nagata D. Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int J Nanomedicine 2015; 10:3475-88. [PMID: 25999712 PMCID: PMC4435251 DOI: 10.2147/ijn.s82587] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal fibrosis is the final common pathway leading to end-stage renal disease. Although microRNA (miR) was recently shown to be involved in the development of renal fibrosis, few studies have focused on the effects on renal fibrosis of exogenous miR delivered in an in vivo therapeutic setting. The study reported here investigated the effects of miR-146a delivery using polyethylenimine nanoparticles (PEI-NPs) on renal fibrosis in vivo. PEI-NPs bearing miR-146 or control-miR (nitrogen/phosphate ratio: 6) were injected into the tail vein of a mouse model of renal fibrosis induced by unilateral ureteral obstruction. PEI-NPs bearing miR-146 significantly enhanced miR-146a expression in the obstructed kidney compared with the control group, while inhibiting the renal fibrosis area, expression of alpha-smooth muscle actin, and infiltration of F4/80-positive macrophages into the obstructed kidney. In addition, PEI-NPs bearing miR-146a inhibited the transforming growth factor beta 1–Smad and tumor necrosis factor receptor-associated factor 6–nuclear factor kappa B signaling pathways. Control-miR-PEI-NPs did not show any of these effects. These results suggest that the delivery of miR-146a attenuated renal fibrosis by inhibiting pro-fibrotic and inflammatory signaling pathways and that the delivery of appropriate miRs may be a therapeutic option for preventing renal fibrosis in vivo.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Toshimi Imai
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiromichi Yoshizawa
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Minami Watanabe
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Park SY, Lee HJ, Ji SM, Kim ME, Jigden B, Lim JE, Oh B. ANTXR2 is a potential causative gene in the genome-wide association study of the blood pressure locus 4q21. Hypertens Res 2014; 37:811-7. [PMID: 24739539 DOI: 10.1038/hr.2014.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 01/11/2023]
Abstract
Hypertension is the most prevalent cardiovascular disease worldwide, but its genetic basis is poorly understood. Recently, genome-wide association studies identified 33 genetic loci that are associated with blood pressure. However, it has been difficult to determine whether these loci are causative owing to the lack of functional analyses. Of these 33 genome-wide association studies (GWAS) loci, the 4q21 locus, known as the fibroblast growth factor 5 (FGF5) locus, has been linked to blood pressure in Asians and Europeans. Using a mouse model, we aimed to identify a causative gene in the 4q21 locus, in which four genes (anthrax toxin receptor 2 (ANTXR2), PR domain-containing 8 (PRDM8), FGF5 and chromosome 4 open reading frame 22 (C4orf22)) were near the lead single-nucleotide polymorphism (rs16998073). Initially, we examined Fgf5 gene by measuring blood pressure in Fgf5-knockout mice. However, blood pressure did not differ between Fgf5 knockout and wild-type mice. Therefore, the other candidate genes were studied by in vivo small interfering RNA (siRNA) silencing in mice. Antxr2 siRNA was pretreated with polyethylenimine and injected into mouse tail veins, causing a significant decrease in Antxr2 mRNA by 22% in the heart. Moreover, blood pressure measured under anesthesia in Antxr2 siRNA-injected mice rose significantly compared with that of the controls. These results suggest that ANTXR2 is a causative gene in the human 4q21 GWAS-blood pressure locus. Additional functional studies of ANTXR2 in blood pressure may identify a novel genetic pathway, thus increasing our understanding of the etiology of essential hypertension.
Collapse
Affiliation(s)
- So Yon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hyeon-Ju Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su-Min Ji
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Marina E Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Baigalmaa Jigden
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bermseok Oh
- 1] Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea [2] Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea [3] Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|