1
|
Ali ML, Ferrieres L, Jass J, Hyötyläinen T. Metabolic Changes in Pseudomonas oleovorans Isolated from Contaminated Construction Material Exposed to Varied Biocide Treatments. Metabolites 2024; 14:326. [PMID: 38921461 PMCID: PMC11205842 DOI: 10.3390/metabo14060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.
Collapse
Affiliation(s)
- Muatasem Latif Ali
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
- Saint-Gobain SWEDEN AB, SCANSPAC, Kemivägen 7, SE 705 97 Glanshammar, Sweden
| | - Lionel Ferrieres
- Saint-Gobain Recherche, 39 Quai Lucien Lefranc, FR-93303 Aubervilliers Cedex, France;
| | - Jana Jass
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| |
Collapse
|
2
|
Bian P, Chai J, Xu B. Research Advances on Deafness Genes Associated with Mitochondrial tRNA-37 Modifications. J Int Adv Otol 2023; 19:414-419. [PMID: 37789629 PMCID: PMC10645192 DOI: 10.5152/iao.2023.231107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 10/05/2023] Open
Abstract
As the most common cause of speech disorders, the etiological study of deafness is important for the diagnosis and treatment of deafness. The mitochondrial genome has gradually become a hotspot for deafness genetic research. Mitochondria are the core organelles of energy and material metabolism in eukaryotic cells. Human mitochondria contain 20 amino acids, except for tRNALeu and tRNASer, which have 2 iso-receptors, the other 18 amino acids correspond to unique tRNAs one by one, so mutations in any one tRNA may lead to protein translation defects in mitochondria and thus affect their oxidative phosphorylation process resulting in the corresponding disease phenotype. Mitochondrial tRNAs are extensively modified with base modifications that contribute to the correct folding of tRNAs and maintain their stability. Defective mitochondrial tRNA modifications are closely associated with the development of mitochondrial diseases. The in-depth study found that modification defects of mammalian mitochondrial tRNAs are associated with deafness, especially the nucleotide modification defect of mt-tRNA-37. This article reviews the research on mitochondrial tRNAs, nucleotide modification structure of mitochondrial tRNA-37, and nuclear genes related to modification defects to provide new ideas for the etiological study of deafness.
Collapse
Affiliation(s)
- Panpan Bian
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Chai
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Haruehanroengra P, Zheng YY, Ma G, Lan TH, Hassan AEA, Zhou Y, Sheng J. Probing the Substrate Requirements of the in vitro Geranylation Activity of Selenouridine Synthase (SelU). Chembiochem 2022; 23:e202200089. [DOI: 10.1002/cbic.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ya Ying Zheng
- University at Albany Chemistry 1400 Washington Ave.Life Science 2033B 12222 Albany UNITED STATES
| | - Guolin Ma
- Texas A&M University System Health Science Center College of Medicine: Texas A&M University College of Medicine Bioscience and Technology UNITED STATES
| | - Tien-Hung Lan
- Texas A&M University System Health Science Center College of Medicine: Texas A&M University College of Medicine Bioscience and Technology UNITED STATES
| | | | - Yubin Zhou
- Texas A&M University System Health Science Center College of Medicine: Texas A&M University College of Medicine Bioscience and Technology UNITED STATES
| | - Jia Sheng
- University at Albany State University of New York Chemistry 1400 Washington Ave.LSRB 2033B 12222 Albany UNITED STATES
| |
Collapse
|
4
|
Mathlin J, Le Pera L, Colombo T. A Census and Categorization Method of Epitranscriptomic Marks. Int J Mol Sci 2020; 21:ijms21134684. [PMID: 32630140 PMCID: PMC7370119 DOI: 10.3390/ijms21134684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, thorough investigation of chemical modifications operated in the cells on ribonucleic acid (RNA) molecules is gaining momentum. This new field of research has been dubbed “epitranscriptomics”, in analogy to best-known epigenomics, to stress the potential of ensembles of RNA modifications to constitute a post-transcriptional regulatory layer of gene expression orchestrated by writer, reader, and eraser RNA-binding proteins (RBPs). In fact, epitranscriptomics aims at identifying and characterizing all functionally relevant changes involving both non-substitutional chemical modifications and editing events made to the transcriptome. Indeed, several types of RNA modifications that impact gene expression have been reported so far in different species of cellular RNAs, including ribosomal RNAs, transfer RNAs, small nuclear RNAs, messenger RNAs, and long non-coding RNAs. Supporting functional relevance of this largely unknown regulatory mechanism, several human diseases have been associated directly to RNA modifications or to RBPs that may play as effectors of epitranscriptomic marks. However, an exhaustive epitranscriptome’s characterization, aimed to systematically classify all RNA modifications and clarify rules, actors, and outcomes of this promising regulatory code, is currently not available, mainly hampered by lack of suitable detecting technologies. This is an unfortunate limitation that, thanks to an unprecedented pace of technological advancements especially in the sequencing technology field, is likely to be overcome soon. Here, we review the current knowledge on epitranscriptomic marks and propose a categorization method based on the reference ribonucleotide and its rounds of modifications (“stages”) until reaching the given modified form. We believe that this classification scheme can be useful to coherently organize the expanding number of discovered RNA modifications.
Collapse
Affiliation(s)
- Julia Mathlin
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Loredana Le Pera
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Teresa Colombo
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
| |
Collapse
|
5
|
Jaroensuk J, Wong YH, Zhong W, Liew CW, Maenpuen S, Sahili AE, Atichartpongkul S, Chionh YH, Nah Q, Thongdee N, McBee ME, Prestwich EG, DeMott MS, Chaiyen P, Mongkolsuk S, Dedon PC, Lescar J, Fuangthong M. Crystal structure and catalytic mechanism of the essential m 1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa. RNA (NEW YORK, N.Y.) 2019; 25:1481-1496. [PMID: 31399541 PMCID: PMC6795141 DOI: 10.1261/rna.066746.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The tRNA (m1G37) methyltransferase TrmD catalyzes m1G formation at position 37 in many tRNA isoacceptors and is essential in most bacteria, which positions it as a target for antibiotic development. In spite of its crucial role, little is known about TrmD in Pseudomonas aeruginosa (PaTrmD), an important human pathogen. Here we present detailed structural, substrate, and kinetic properties of PaTrmD. The mass spectrometric analysis confirmed the G36G37-containing tRNAs Leu(GAG), Leu(CAG), Leu(UAG), Pro(GGG), Pro(UGG), Pro(CGG), and His(GUG) as PaTrmD substrates. Analysis of steady-state kinetics with S-adenosyl-l-methionine (SAM) and tRNALeu(GAG) showed that PaTrmD catalyzes the two-substrate reaction by way of a ternary complex, while isothermal titration calorimetry revealed that SAM and tRNALeu(GAG) bind to PaTrmD independently, each with a dissociation constant of 14 ± 3 µM. Inhibition by the SAM analog sinefungin was competitive with respect to SAM (Ki = 0.41 ± 0.07 µM) and uncompetitive for tRNA (Ki = 6.4 ± 0.8 µM). A set of crystal structures of the homodimeric PaTrmD protein bound to SAM and sinefungin provide the molecular basis for enzyme competitive inhibition and identify the location of the bound divalent ion. These results provide insights into PaTrmD as a potential target for the development of antibiotics.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Wenhe Zhong
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Abbas E Sahili
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Qianhui Nah
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Narumon Thongdee
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance and Infectious Disease Interdisciplinary Research Groups, 138602 Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Mayuree Fuangthong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| |
Collapse
|
6
|
Abstract
Ribonucleic acid (RNA) is involved in translation and transcription, which are the mechanisms in which cells express genes (Alberts et al., 2002). The three classes of RNA discussed are transfer RNA (tRNA), messenger RNA (mRNA), and ribosomal RNA (rRNA). mRNA is the transcript encoded from DNA, rRNA is associated with ribosomes, and tRNA is associated with amino acids and is used to read mRNA transcripts to make proteins (Lodish, Berk, Zipursky, et al., 2000). Interestingly, the function of tRNA, rRNA, and mRNA can be significantly altered by chemical modifications at the co-transcriptional and post-transcriptional levels, and there are over 171 of these modifications identified thus far (Boccaletto et al., 2018; Modomics-Modified bases, 2017). Several of these modifications are linked to diseases such as cancer, diabetes, and neurological disorders. In this review, we will introduce a few RNA modifications with biological functions and how dysregulation of these RNA modifications is linked to human disease.
Collapse
Affiliation(s)
- Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
7
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
8
|
Schweizer U, Bohleber S, Fradejas-Villar N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 2017; 14:1197-1208. [PMID: 28277934 PMCID: PMC5699536 DOI: 10.1080/15476286.2017.1294309] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Base 37 in tRNA, 3′-adjacent to the anticodon, is occupied by a purine base that is thought to stabilize codon recognition by stacking interactions on the first Watson-Crick base pair. If the first codon position forms an A.U or U.A base pair, the purine is likely further modified in all domains of life. One of the first base modifications found in tRNA is N6-isopentenyl adenosine (i6A) present in a fraction of tRNAs in bacteria and eukaryotes, which can be further modified to 2-methyl-thio-N6-isopentenyladenosine (ms2i6A) in a subset of tRNAs. Homologous tRNA isopentenyl transferase enzymes have been identified in bacteria (MiaA), yeast (Mod5, Tit1), roundworm (GRO-1), and mammals (TRIT1). In eukaryotes, isopentenylation of cytoplasmic and mitochondrial tRNAs is mediated by products of the same gene. Accordingly, a patient with homozygous mutations in TRIT1 has mitochondrial disease. The role of i6A in a subset of tRNAs in gene expression has been linked with translational fidelity, speed of translation, skewed gene expression, and non-sense suppression. This review will not cover the action of i6A as a cytokinin in plants or the potential function of Mod5 as a prion in yeast.
Collapse
Affiliation(s)
- Ulrich Schweizer
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Simon Bohleber
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Noelia Fradejas-Villar
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|