1
|
Pillay K, Chiliza TE, Senzani S, Pillay B, Pillay M. In silico design of Mycobacterium tuberculosis multi-epitope adhesin protein vaccines. Heliyon 2024; 10:e37536. [PMID: 39323805 PMCID: PMC11422057 DOI: 10.1016/j.heliyon.2024.e37536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) adhesin proteins are promising candidates for subunit vaccine design. Multi-epitope Mtb vaccine and diagnostic candidates were designed using immunoinformatic tools. The antigenic potential of 26 adhesin proteins were determined using VaxiJen 2.0. The truncated heat shock protein 70 (tnHSP70), 19 kDa antigen lipoprotein (lpqH), Mtb curli pili (MTP), and Phosphate transport protein S1 (PstS1) were selected based on the number of known epitopes on the Immune Epitope Database (IEDB). B- and T-cell epitopes were identified using BepiPred2.0, ABCpred, SVMTriP, and IEDB, respectively. Population coverage was analysed using prominent South African specific alleles on the IEDB. The allergenicity, physicochemical characteristics and tertiary structure of the tri-fusion proteins were determined. The in silico immune simulation was performed using C-ImmSim. Three truncated sequences, with predicted B and T cell epitopes, and without allergenicity or signal peptides were linked by three glycine-serine residues, resulting in the stable, hydrophilic molecules, tnlpqH-tnPstS1-tnHSP70 (64,86 kDa) and tnMTP-tnPstS1-tnHSP70 (63,96 kDa). Restriction endonuclease recognition sequences incorporated at the N- and C-terminal ends of each construct, facilitated virtual cloning using Snapgene, into pGEX6P-1, resulting in novel, highly immunogenic vaccine candidates (0,912-0,985). Future studies will involve the cloning, recombinant protein expression and purification of these constructs for downstream applications.
Collapse
Affiliation(s)
- Koobashnee Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Thamsanqa E. Chiliza
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa
| | - Sibusiso Senzani
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Balakrishna Pillay
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa
| | - Manormoney Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| |
Collapse
|
2
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
3
|
Manickavasagam P, Abhishek S, Rajakumara E. Designing ferritin nanocage based vaccine candidates for SARS-CoV-2 by in silico engineering of its HLA I and HLA II epitope peptides. J Biomol Struct Dyn 2022:1-13. [PMID: 35894946 DOI: 10.1080/07391102.2022.2103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
New variants of SARS-CoV-2 are continuously being reported. To curtail the spread of this virus, it is essential to find an efficient and potent vaccine. Here, we report in silico designing of a protein (ferritin: FR) nanocage fused with multiple epitopes identified using the immuno-informatics approach and high-throughput screening. Employing computational approaches, we identified potential epitopes from membrane, nucleocapsid, and envelope proteins of SARS-CoV-2 and docked them on the selected human leukocyte antigen Class I and II receptors, then the stability of the complexes was assessed using molecular dynamics simulation studies. We have engineered chimeric ferritin nanocage, chm66FR, with the nested peptide of 10 epitopes by replacing the loop region at the 66th position of the nanocage, then its stability was confirmed using metadynamics simulation. Further, we used the homotrimeric '6-helical bundle' of the spike protein to engineer the chimeric 6HB (chm6HB). The chm6HB is, engineered with three epitope peptides, mounted on the N-terminal trimeric interface of the chm66FR to generate the chm6HB-chm66FR, which contains 15 epitope peptides. Chimeric FR nanocages and the chm6HB could be potential vaccine candidates against strains of SARS-CoV-2. These multivalent and multiple epitopes protein nanocages and scaffolds could mount both humoral and T-cell mediated immune responses against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratibha Manickavasagam
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
4
|
Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa HO, Al-Gaabary M, Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022; 11:pathogens11070715. [PMID: 35889961 PMCID: PMC9320398 DOI: 10.3390/pathogens11070715] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.
Collapse
Affiliation(s)
- Mohamed Borham
- Bacteriology Department, Animal Health Research Institute Matrouh Lab, Matrouh 51511, Egypt;
| | - Atef Oreiby
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Attia El-Gedawy
- Bacteriology Department, Animal Health Research Institute, Giza 12618, Egypt;
| | - Yamen Hegazy
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Hazim O. Khalifa
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
- Correspondence: (H.O.K.); (T.M.)
| | - Magdy Al-Gaabary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Correspondence: (H.O.K.); (T.M.)
| |
Collapse
|
5
|
Keikha M, Majidzadeh M. Beijing genotype of Mycobacterium tuberculosis is associated with extensively drug-resistant tuberculosis: A global analysis. New Microbes New Infect 2021; 43:100921. [PMID: 34466269 PMCID: PMC8383003 DOI: 10.1016/j.nmni.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
We found that the frequency of Beijing genotype among XDR-TB strains was high. The data in this study would help guide the TB control program, and we however need further investigation to confirm the reliability of the present findings.
Collapse
Affiliation(s)
- M Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Majidzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Gutiérrez-Ortega A, Moreno DA, Ferrari SA, Espinosa-Andrews H, Ortíz EP, Milián-Suazo F, Alvarez AH. High-yield production of major T-cell ESAT6-CFP10 fusion antigen of M. tuberculosis complex employing codon-optimized synthetic gene. Int J Biol Macromol 2021; 171:82-88. [PMID: 33418045 DOI: 10.1016/j.ijbiomac.2020.12.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Translation engineering and bioinformatics have accelerated the rate at which gene sequences can be improved to generate multi-epitope proteins. Strong antigenic proteins for tuberculosis diagnosis include individual ESAT6 and CFP10 proteins or derived peptides. Obtention of heterologous multi-component antigens in E. coli without forming inclusion bodies remain a biotechnological challenge. The gene sequence for ESAT6-CFP10 fusion antigen was optimized by codon bias adjust for high-level expression as a soluble protein. The obtained fusion protein of 23.7 kDa was observed by SDS-PAGE and Western blot analysis after Ni-affinity chromatography and the yield of expressed soluble protein reached a concentration of approximately 67 mg/L in shake flask culture after IPTG induction. Antigenicity was evaluated at 4 μg/mL in whole blood cultures from bovines, and protein stimuli were assessed using a specific in vitro IFN-γ release assay. The hybrid protein was able to stimulate T-cell specific responses of bovine TB suspects. The results indicate that improved E. coli codon usage is a good and cost-effective strategy to potentialize large scale production of multi-epitope proteins with sustained antigenic properties for diagnostic purposes.
Collapse
Affiliation(s)
- A Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - D A Moreno
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - S A Ferrari
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - H Espinosa-Andrews
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico
| | - E P Ortíz
- Centro Universitario de Los Altos, Universidad de Guadalajara, Km 7.5 Carretera a Yahualica, CP 47600 Tepatitlán de Morelos, Mexico
| | - F Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n Juriquilla, Delegación Santa Rosa Jáuregui, C.P. 76230 Querétaro, Mexico
| | - A H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Av. Normalistas 800, C.P. 44270 Guadalajara, Mexico.
| |
Collapse
|