1
|
Wahnou H, El Kebbaj R, Liagre B, Sol V, Limami Y, Duval RE. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics 2025; 17:114. [PMID: 39861761 PMCID: PMC11768525 DOI: 10.3390/pharmaceutics17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application. Nanotechnology offers a viable solution to these challenges by enabling the development of curcumin-based nanoparticles (CNPs) that enhance its bioavailability and therapeutic efficacy. This review provides a comprehensive overview of the recent advancements in the design and synthesis of CNPs for cancer therapy. We discuss various NP formulations, including polymeric, lipid-based, and inorganic nanoparticles, highlighting their role in improving curcumin's pharmacokinetic and pharmacodynamic profiles. The mechanisms by which CNPs exert anticancer effects, such as inducing apoptosis, inhibiting cell proliferation, and modulating signaling pathways, are explored in details. Furthermore, we examine the preclinical and clinical studies that have demonstrated the efficacy of CNPs in treating different types of tumors, including breast, colorectal, and pancreatic cancers. Finally, the review addresses the current challenges and future perspectives in the clinical translation of CNPs, emphasizing the need for further research to optimize their design for targeted delivery and to enhance their therapeutic outcomes. By synthesizing the latest research, this review underscores the potential of CNPs as a promising avenue for advancing cancer therapy.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P2693, Maarif, Casablanca 20100, Morocco;
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | | |
Collapse
|
2
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
3
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
4
|
Hassanizadeh S, Shojaei M, Bagherniya M, Orekhov AN, Sahebkar A. Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. Biofactors 2023. [PMID: 36607090 DOI: 10.1002/biof.1932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The antioxidant, anti-inflammatory, and antibacterial properties of curcumin have made it a valuable herbal product for improving various disorders, such as COVID-19, cancer, depression, anxiety, osteoarthritis, migraine, and diabetes. Recent research has demonstrated that encapsulating curcumin in nanoparticles might improve its therapeutic effects and bioavailability. To our knowledge, the efficacy of nano-curcumin on different aspects of health and disease has not been summarized in a study. Therefore, this review aimed to evaluate nano-curcumin's efficacy in various diseases based on the findings of clinical trials. In order to review publications focusing on nanocurcumin's impact on various diseases, four databases were searched, including PubMed, Scopus, Web of Science, and Google Scholar. This review highlights the potential benefits of nano-curcumin in improving a wide range of human diseases including COVID-19, neurological disorders, chronic disease, oral diseases, osteoarthritis, metabolic syndrome, and other diseases, especially as an adjunct to standard therapy and a healthy lifestyle.
Collapse
Affiliation(s)
- Shirin Hassanizadeh
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Naeini F, Tutunchi H, Razmi H, Mahmoodpoor A, Vajdi M, Sefidmooye Aza P, Najifipour F, Tarighat-Esfanjani A, Karimi A. Does nano-curcumin supplementation improve hematological indices in critically ill patients with sepsis? A randomized controlled clinical trial. J Food Biochem 2022; 46:e14093. [PMID: 35150143 DOI: 10.1111/jfbc.14093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
Abstract
Sepsis is the final common pathway to death for severe infectious diseases worldwide. The present trial aimed to investigate the effects of nano-curcumin supplementation on hematological indices in critically ill patients with sepsis. Fourteen ICU-admitted patients were randomly allocated into either nano-curcumin or placebo group for 10 days. The blood indices, serum levels of inflammatory biomarker and presepsin as well as nutrition status, and clinical outcomes were assessed before the intervention and on days 5 and 10. White blood cells, neutrophils, platelets, erythrocyte sedimentation rate (ESR), and the levels of interleukin-8 significantly decreased in the nano-curcumin group compared to the placebo after 10 days of intervention (p = .024, p = .045, p = .017, p = .041, and p = .004, respectively). There was also a marginal meaningful decrease in serum presepsin levels in the intervention group compared to the placebo at the end of the study (p = .054). However, total lymphocyte count showed a significant increase in the nano-curcumin group compared to the placebo at the end-point (p = .04). No significant differences were found in the level of lymphocyte and the ratios of neutrophil/lymphocyte and platelet/lymphocyte between the study groups. Moreover, no significant between-group differences were observed for other study outcomes, post-intervention. Collectively, nano-curcumin may be a useful adjuvant therapy in critically ill patients with sepsis. However, further trials are suggested to examine the effects of nano-curcumin in the management of sepsis and its complications. PRACTICAL APPLICATIONS: Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5- dione) or diferuloylmethane is widely used in medicine due to its several biological properties. Recent evidence has shown that curcumin possesses multiple pharmacological activities including immune-modulatory, antioxidant, anti-inflammatory, anti-cancer, and anti-microbial effects. In this study, it was observed that nano-curcumin at a dose of 160 mg for 10 days, without side effects, reduced some inflammatory factors and regulated the immune responses in sepsis patients. For the first time, this trial was conducted to determine the effect of nano-curcumin on hematological indices and the serum levels of presepsin and IL-8.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Razmi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata Mahmoodpoor
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Aza
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, University Park, Mississippi, USA
| | - Farzad Najifipour
- Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Shakeri F, Bibak B, Safdari MR, Keshavarzi Z, Jamialahmadi T, Sathyapalan T, Sahebkar A. Cellular and molecular mechanisms of curcumin on thyroid gland disorders. Curr Med Chem 2022; 29:2878-2890. [PMID: 35142266 DOI: 10.2174/0929867329666220210145033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
There is growing literature on the positive therapeutic potentials of curcumin. Curcumin or diferuloylmethane is a polyphenol obtained from the plant Curcuma longa. Curcumin has been used widely in Ayurvedic and Chinese medicine for various conditions. The role of curcumin on thyroid glands has been shown by its effects on various biological pathways, including anti-inflammatory, antioxidant, anti-proliferative, apoptosis, angiogenesis, cell cycle and metastasis. We reviewed the recent literature on curcumin applications for thyroid dysfunction, including hyperthyroidism and hypothyroidism, and discussed the molecular mechanisms of these effects. This review aims to summarize the wealth of research related to the thyroid gland therapeutic effect of curcumin.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Safdari
- Department of Orthopedic Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Vinnikov V, Belyakov O. Clinical Applications of Biological Dosimetry in Patients Exposed to Low Dose Radiation Due to Radiological, Imaging or Nuclear Medicine Procedures. Semin Nucl Med 2021; 52:114-139. [PMID: 34879905 DOI: 10.1053/j.semnuclmed.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation dosimetric biomarkers have found applications beyond radiation protection area and now are actively introduced into clinical practice. Cytogenetic assays appeared to be a valuable tool for individualized quantifying radiation effects in patients, with high capability for assessing genotoxicity of various medical exposure modalities and providing meaningful radiation dose estimates for prognoses of radiation-related cancer risk. This review summarized current data on the use of biological dosimetry methods in patients undergoing various medical irradiations to low doses. The highlighted topics include basic aspects of biological dosimetry and its limitations in the range of low radiation doses, and main patterns of in vivo induction of radiation biomarkers in clinical exposure scenarios, occurring in X-ray diagnostics, computed tomography, interventional radiology, low dose radiotherapy, and nuclear medicine (internally administered 131I and other radiopharmaceuticals). Additionally, several specific issues, examined by biodosimetry techniques, are analysed, such as contrast media effect, radiation response in pediatric patients, impact of magnetic resonance imaging, evaluation of radioprotectors, detection of patients' abnormal intrinsic radiosensitivity and dose estimation in persons involved in medical radiation incidents. A prognosis of possible directions for further improvements in this area includes the automation of cytogenetic analysis, introduction of molecular biodosimeters and development of multiparametric biodosimetry platforms. A potential approach to the advanced biodosimetry of internal exposure and/or low dose external irradiation is suggested; this can be a multiparametric platform based on the combination of the γ-H2AX foci, dicentric, and translocation assays, each applied in the optimum postexposure time range, with the amalgamation of the dose estimates. The study revealed the necessity of further research, which might clarify medical radiation safety concerns for patients via using stringent biodosimetry methodology.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- International Atomic Energy Agency (IAEA), Vienna, Austria; Grigoriev Institute for Medical Radiology and Oncology (GIMRO), Kharkiv, Ukraine.
| | - Oleg Belyakov
- International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
8
|
Rambaran TF, Nordström A. Medical and pharmacokinetic effects of nanopolyphenols: A systematic review of clinical trials. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Theresa F. Rambaran
- Department of Public Health and Clinical Medicine, Section of Sustainable Health Umeå University Umeå Sweden
| | - Anna Nordström
- Department of Public Health and Clinical Medicine, Section of Sustainable Health Umeå University Umeå Sweden
- School of Sport Sciences UiT Arctic University of Norway Tromsö Norway
| |
Collapse
|
9
|
Jagetia GC. Antioxidant activity of curcumin protects against the radiation-induced micronuclei formation in cultured human peripheral blood lymphocytes exposed to various doses of γ-Radiation. Int J Radiat Biol 2021; 97:485-493. [PMID: 33464136 DOI: 10.1080/09553002.2021.1876948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Ionizing radiations trigger the formation of free radicals that damage DNA and cause cell death. DNA damage may be simply evaluated by micronucleus assay and the pharmacophores that impede free radicals could effectively reduce the DNA damage initiated by irradiation. Therefore, it was desired to determine the capacity of curcumin to alleviate micronuclei formation in human peripheral blood lymphocytes (HPBLs) exposed to 0-4 Gy of γ-radiation. MATERIALS AND METHODS HPBLs were exposed to 3 Gy after 30 minutes of 0.125, 0.25, 0.5, 1, 2, 5, 10, 20 or 50 µg/mL curcumin treatment or with 0.5 μg/mL curcumin 30 minutes early to 0, 0.5, 1, 2, 3 or 4 Gy 60Co γ-irradiation. Cytokinesis of HPBLs was blocked by cytochalasin B and micronuclei scored. The ability of curcumin to suppress free radical induction in vitro was determined by standard methods. RESULTS HPBLs treated with different concentrations of curcumin before 3 Gy irradiation alleviated the micronuclei formation depending on curcumin concentration and the lowest micronuclei were detected at 0.5 µg/mL curcumin when compared to 3 Gy irradiation alone. Increasing curcumin concentration caused a gradual rise in micronuclei, and the significant increases were detected at 10-50 µg/mL curcumin than 3 Gy irradiation alone. Irradiation of HPBLs to different doses of γ-rays caused a significant rise in micronuclei depending on radiation dose, whereas HPBLs treated with 0.5 µg/mL curcumin 30 minutes before irradiation to different doses of γ-rays significantly reduced frequencies of HPBLs with one, two, or more micronuclei. Curcumin treatment inhibited the formation of hydroxyl (OH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), and (nitric oxide) NO free radicals in a concentration-related way. CONCLUSIONS Curcumin when treated at a dose of 0.5 μg/mL attenuated micronuclei formation after γ-irradiation by inhibiting the formation of radiation-induced free radicals.
Collapse
|
10
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Gregoretti L, Manini P, Dusemund B. Safety and efficacy of turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture from Curcuma longa L. rhizome when used as sensory additives in feed for all animal species. EFSA J 2020; 18:e06146. [PMID: 32874324 PMCID: PMC7448085 DOI: 10.2903/j.efsa.2020.6146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture from Curcuma longa L. rhizome when used as sensory additives in feed and in water for drinking for all animal species. The FEEDAP Panel concludes that the additives under consideration are safe at the maximum proposed use levels: (i) turmeric extract at 15 mg/kg complete feed (or in water for drinking at comparable exposure) for all animal species; (ii) turmeric essential oil at 80 mg/kg feed for veal calves (milk replacer) and 20 mg/kg complete feed (or 20 mg/L) for all other species; (iii) turmeric oleoresin at 30 mg/kg complete feed (or 30 mg/L) for chickens for fattening and laying hens and 5 mg/kg complete feed (or 5 mg/L) for pigs, veal calves, cattle for fattening and dairy cows, sheep, goats, horses, rabbits and fish; (iv) turmeric tincture at 0.8 mL/L water for drinking for poultry, 6 mL per head and day for horses and 0.05 mL tincture/kg complete feed for dogs. No concerns for consumers were identified following the use of the additives at the proposed use level in animal nutrition. Turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture should be considered as irritants to skin and eyes and the respiratory tract and as skin sensitisers. The use of the additives in feed is not expected to pose a risk for the environment. Since turmeric and its preparations are recognised to flavour food and their function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary.
Collapse
|
11
|
Sharifi-Rad J, Rajabi S, Martorell M, López MD, Toro MT, Barollo S, Armanini D, Fokou PVT, Zagotto G, Ribaudo G, Pezzani R. Plant natural products with anti-thyroid cancer activity. Fitoterapia 2020; 146:104640. [PMID: 32474055 DOI: 10.1016/j.fitote.2020.104640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Thyroid cancer is the most frequent endocrine malignancy, with more than 500,000 cases per year worldwide. Differentiated thyroid cancers are the most common forms with best prognosis, while poorly/undifferentiated ones are rare (2% of all thyroid cancer), aggressive, frequently metastasize and have a worse prognosis. For aggressive, metastatic and advanced thyroid cancer novel antitumor molecules are urgently needed and phytochemical products can be a rational and extensive source, since secondary plant metabolites can guarantee the necessary biochemical variability for therapeutic purpose. Among bioactive molecules that present biological activity on thyroid cancer, resveratrol, curcumin, isoflavones, glucosinolates are the most common and used in experimental model. Most of them have been studied both in vitro and in vivo on this cancer, but rarely in clinical trial. This review summarizes phytochemicals, phytotherapeutics and plant derived compounds used in thyroid cancer.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile; Centre for Healthy Living, University of Concepción, Concepción, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile.
| | - Maria Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile.
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| |
Collapse
|