1
|
Korpi F, Irajian G, Forouhi F, Mohammadian T. A chimeric vaccine targeting Pseudomonas aeruginosa virulence factors protects mice against lethal infection. Microb Pathog 2023; 178:106033. [PMID: 36813005 DOI: 10.1016/j.micpath.2023.106033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Pseudomonas aeruginosa is an important and hazardous nosocomial pathogen in respiratory tract infections and rapidly achieves antibiotic resistance, so it is necessary to develop an effective vaccine to combat the infection. The Type III secretion system (T3SS) protein P. aeruginosa V-antigen (PcrV), outer membrane protein F (OprF), and two kinds of flagellins (FlaA and FlaB) all play important roles in the pathogenesis of P. aeruginosa lung infection and its spread into deeper tissues. In a mouse acute pneumonia model, the protective effects of a chimer vaccine including PcrV, FlaA, FlaB, and OprF (PABF) protein were investigated. PABF immunization prompted robust opsonophagocytic titer of IgG antibodies and decreased bacterial burden, and improved survival afterward intranasal challenge with ten times 50% lethal doses (LD50) of P. aeruginosa strains, indicating its broad-spectrum immunity. Moreover, these findings showed a promise chimeric vaccine candidate to treat and control P. aeruginosa infections.
Collapse
Affiliation(s)
- Fatemeh Korpi
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| | - Gholamreza Irajian
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Forouhi
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| | - Taher Mohammadian
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| |
Collapse
|
2
|
Ahmadi TS, Mousavi Gargari SL, Talei D. Anti-flagellin IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound murine models in a non-type-specific mode. Mol Immunol 2021; 136:118-127. [PMID: 34130152 DOI: 10.1016/j.molimm.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa (PA) is one of the most dominant causes of nosocomial infections in burn patients. Increasing emergence of antibiotic-resistant strains highlights the need for novel antimicrobial agents. Flagellin, the main component protein of flagellum, is determined as the major antigen interacting with anti-P. aeruginosa IgY antibodies. The current study was aimed to evaluate the antibacterial potency of IgY antibodies raised against recombinant type A, and B flagellins. The immunogenicity and specificity of IgY antibodies were confirmed through indirect ELISA and western blot analysis, respectively. Anti-flagellin IgYs reduced the motility, biofilm formation and invasion potency of both strains. The cell surface hydrophobicity (CSH) of bacteria was increased upon IgY treatment, and in vitro opsonophagocytosis assay confirmed the high protective potency of specific antibodies via polymorphonuclear leukocyte (PMN)-augmented bacterial cell killing. The protective efficacy of IgYs was also studied in both acute pneumonia and burn wound murine models. Anti-flagellin B-IgY induced 100 % and 40 % protection against laboratory, and hospital strains in burn wound model, respectively. Protection in acute pneumonia against all strains was 100 %. Anti-flagellin A-IgY failed to protect mice in burn wound model, but provided 100 % protection against all strains in acute pneumonia challenge. In vitro, ex vivo and in vivo experiments confirmed the dose-dependent and non-type specific essence of anti-flagellin IgY antibodies, providing the benefit of covering all strain types in a dose dependent manner. Our findings provide evidence that anti-flagellin IgY antibodies qualify as novel economical therapeutic option against PA infection.
Collapse
Affiliation(s)
- Tooba Sadat Ahmadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Daryush Talei
- Medicinal Plants Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Immunotherapy with IgY Antibodies toward Outer Membrane Protein F Protects Burned Mice against Pseudomonas aeruginosa Infection. J Immunol Res 2020; 2020:7840631. [PMID: 32566689 PMCID: PMC7275967 DOI: 10.1155/2020/7840631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Burn patients with multidrug-resistant Pseudomonas aeruginosa infections commonly suffer from high morbidity and mortality, which present a major challenge to healthcare systems throughout the world. Outer membrane protein F (OprF), as a main outer membrane porin, is required for full virulence expression of P. aeruginosa. The aim of this study was to evaluate the protective efficacy of egg yolk-specific antibody (IgY) raised against recombinant OprF (r-OprF) protein in a murine burn model of infection. The hens were immunized with r-OprF, and anti-r-OprF IgY was purified using salt precipitation. Groups of mice were injected with different regimens of anti-OprF IgY or control IgY (C-IgY). Infections were caused by subcutaneous injection of P. aeruginosa strain PAO1 at the burn site. Mice were monitored for mortality for 5 days. The functional activity of anti-OprF IgY was determined by in vitro invasion assays. Immunotherapy with anti-OprF IgY resulted in a significant improvement in the survival of mice infected by P. aeruginosa from 25% to 87.5% compared with the C-IgY and PBS. The anti-OprF IgY decreased the invasion of P. aeruginosa PAO1 into the A549. Passive immunization with anti-OprF IgY led to an efficacious protection against P. aeruginosa burn infection in the burn model.
Collapse
|
4
|
Ranjbar M, Behrouz B, Norouzi F, Mousavi Gargari SL. Anti-PcrV IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound models. Mol Immunol 2019; 116:98-105. [PMID: 31634816 DOI: 10.1016/j.molimm.2019.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly acquires antibiotic resistance; thus, developing an effective therapeutic approach is the most promising strategy for combating infection. Type III secretion system (T3SS) translocates bacterial toxins into the cytosol of the targeted eukaryotic cells, which plays important roles in the virulence of P. aeruginosa infections in both acute pneumonia and burn wound models. The PcrV protein, a T3SS translocating protein, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In the present study, we evaluated the protective efficacy of chicken egg yolk antibodies (IgY) raised against recombinant PcrV (r-PcrV) in both acute pneumonia and burn wound models. R-PcrV protein was generated by expressing the pcrV gene (cloned in pET-28a vector) in E. coli BL-21. Anti-PcrV IgY was obtained by immunization of hen. Anti-PcrV IgY induced greater protection in P. aeruginosamurine acute pneumonia and burn wound models than control IgY (C-IgY) and PBS groups. Anti-PcrV IgY improved opsonophagocytic killing and inhibition of bacterial invasion of host cells. Taken together, our data provide evidence that anti-PcrV IgY can be a promising therapeutic candidate for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Mahya Ranjbar
- Department of Microbiology, Shahed University, Faculty of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Fatemeh Norouzi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | |
Collapse
|
5
|
Hashemi FB, Behrouz B, Irajian G, Laghaei P, Korpi F, Fatemi MJ. A trivalent vaccine consisting of "flagellin A+B and pilin" protects against Pseudomonas aeruginosa infection in a murine burn model. Microb Pathog 2019; 138:103697. [PMID: 31465785 DOI: 10.1016/j.micpath.2019.103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly achieves antibiotic resistance, and thus, developing an effective vaccine is critically important for combating P. aeruginosa infection. Flagella and pili play important roles in colonization of P. aeruginosa at the burn wound site and its subsequent dissemination to deeper tissue and organs. In the present study, we evaluated protective efficacy of a trivalent vaccine containing flagellins A and B (FlaA + FlaB) + pilin (PilA) in a murine burn model of infection. "FlaA + FlaB + PilA" induced greater protection in P. aeruginosa murine burn model than the single components alone, and it showed broad immune protection against P. aeruginosa strains. Immunization with "FlaA + FlaB + PilA" induced strong opsonophagocytic antibodies and resulted in reduced bacterial loads, systemic IL-12/IL-10 cytokine expression, and increased survival after challenge with three times lethal dose fifty (LD50) of P. eruginosa strains. Moreover, the protective efficacy of "FlaA + FlaB + PilA" vaccination was largely attributed to specific antibodies. Taken together, these data further confirm that the protective effects of "FlaA + FlaB + PilA" vaccine significantly enhance efficacy compared with antibodies against either mono or divalent antigen, and that the former broadens the coverage against P. eruginosa strains that express two of the three antigens.
Collapse
Affiliation(s)
- Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Laghaei
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Korpi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Fatemi
- Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Introducing a cost-effective method for purification of bioactive flagellin from several flagellated gram-negative bacteria. Protein Expr Purif 2019; 155:48-53. [DOI: 10.1016/j.pep.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
|
7
|
Khani MH, Bagheri M, Zahmatkesh A, Moradi Bidhendi S. Immunostimulatory effects of truncated and full-length flagellin recombinant proteins. Microb Pathog 2018; 127:190-197. [PMID: 30528248 DOI: 10.1016/j.micpath.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
Problems regarding purification efficacy in recombinant technologies is due to the protein structure. Experimental manipulation of genes and the subsequent proteins may overcome this issue. In order to improve production efficacy and maintain immunestimulatory effect of flagellin, the Toll-like Receptor 5 (TLR5) ligand and a potent adjuvant, we performed a bioinformatic study to find the best model for FliC manipulation. Truncated modified FliC (tmFliC) and full length FliC (flFliC) genes were cloned and expressed in pET-21a vector and protein purification was carried out using an improved His-Tag method. Polyclonal antibodies were generated against flFliC and tmFliC in New Zealand white rabbits. IgG response to the recombinant proteins was determined by ELISA. Cross-reactivity assay was performed by ELISA for all proteins and bacteria. Immunogenicity of tmFliC and flFliC was evaluated in chicken cells, and expression level of tumor necrotic factor-α (TNF-α) and interleukin-6 (IL-6) were relatively analyzed by Real-Time-PCR. Results showed high purification efficacy for tmFliC. Antibody titer of tmFliC was significantly higher than that of flFliC. In addition, the cross-reactivity assay for both proteins and Salmonella was positive which indicates similar epitopic regions. Stimulation of both FliCs significantly increased TNF-α and IL-6 expression in peripheral blood mononuclear cells (PBMCs) and splenocytes, with higher effect observed with flFliC. IL-8 protein level increased after 6 and 24 h stimulation with different concentrations of tmFliC and flFliC. These results suggest that the aimed gene modification in fliC gene produces a bioactive immunostimulant type of flagellin which upregulates TLR5 downstream genes as well as in flFliC.
Collapse
Affiliation(s)
- Mohammad-Hosein Khani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Soheila Moradi Bidhendi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
8
|
Immunization with Bivalent Flagellin Protects Mice against Fatal Pseudomonas aeruginosa Pneumonia. J Immunol Res 2017; 2017:5689709. [PMID: 29201922 PMCID: PMC5671732 DOI: 10.1155/2017/5689709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa lung infections present a major challenge to healthcare systems worldwide because they are commonly associated with high morbidity and mortality. Here, we demonstrate the protective efficacy of type a and b flagellins (bivalent flagellin) against acute fatal pneumonia in mice. Mice immunized intranasally with a bivalent flagellin vaccine were challenged by different flagellated strains of P. aeruginosa in an acute pneumonia model. Besides the protective effect of the vaccine, we further measured the host innate and cellular immunity responses. The immunized mice in our study were protected against both strains. Remarkably, active immunization with type a or b flagellin significantly improved survival of mice against heterologous strain compared to flagellin a or b antisera. We also showed that after an intranasal challenge by P. aeruginosa strain, neutrophils are recruited to the airways of vaccinated mice, and that the bivalent flagellin vaccine was proved to be protective by the generated CD4+IL-17+ Th17 cells. In conclusion, bivalent flagellin vaccine can confer protection against different strains of P. aeruginosa in an acute pneumonia mouse model by eliciting effective cellular and humoral immune responses, including increased IL-17 production and improved opsonophagocytic killing.
Collapse
|
9
|
Ahmadi H, Behrouz B, Irajian G, Amirmozafari N, Naghavi S. Bivalent flagellin immunotherapy protects mice against Pseudomonas aeruginosa infections in both acute pneumonia and burn wound models. Biologicals 2017; 46:29-37. [DOI: 10.1016/j.biologicals.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
|
10
|
Saffari M, Behbood S, Irajian G, Khorshidi A, Moniri R, Behrouz B. Antibodies raised against divalent type b flagellin and pilin provide effective immunotherapy against Pseudomonas aeruginosa infection of mice with burn wounds. Biologicals 2017; 45:20-26. [DOI: 10.1016/j.biologicals.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022] Open
|
11
|
Passive immunization against Pseudomonas aeruginosa recombinant PilA in a murine burn wound model. Microb Pathog 2016; 101:83-88. [PMID: 27836762 DOI: 10.1016/j.micpath.2016.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa type IV pili have an essential role in twitching motility, colonization and biofilm formation. In this study, we investigated the efficacy of intraperitoneal administration of rabbit anti-recombinant PilA (anti-r-PilA) immunoglobulin G (IgG) against P. aeruginosa infection in a mouse burn-wound model. After burn and infection, mortality rate was assessed in all mice, and that of mice passively immunized with rabbit anti-r-PilA IgG was compared to non-immunized mice. Bacterial quantities in the skin and internal organs were measured to determine the level of systemic infection. Results showed that passive immunotherapy with anti-r-PilA IgG protected the burned mice infected with P. aeruginosa strains, PAO1 and the clinical isolate (CI). Anti-r-PilA antibodies enhanced the opsonophagocytosis of these strains. Moreover, the administration of anti-r-PilA IgG was also successful in reducing the bacterial burden in infected mice. The reduction of systemic bacterial spread increased the survival rate of passively immunized mice. Findings of this study revealed an improved survival rate of 62.5%, thus confirming the protective effect of anti-r-PilA IgG.
Collapse
|