1
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Yahyazadeh A, Başak F, Demirel MA. Efficacy of coenzyme Q10 and curcumin on antioxidant enzyme activity and hippocampal alteration following exposure to cyclophosphamide in male rat. Tissue Cell 2024; 86:102296. [PMID: 38184921 DOI: 10.1016/j.tice.2023.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Coenzyme Q10 (KQ10) and curcumin (KUR) supplements are extensively used for their potential antioxidant, anticancer, and antiapoptotic properties. The present study investigated the neuroprotective potential of KQ10 and KUR against the side effect of cyclophosphamide (SF) (150 mg/kg) on the hippocampus of male Wistar albino rats. Forty-nine 10-12 weeks old rats were randomly divided into seven groups: control, olive oil (OL), SF, KQ10, KUR, SF+KQ10, and SF+KUR. Our biochemical finding showed a significant decrease in superoxide dismutase (SOD) level in the SF group compared to the control group (p < 0.05). There was also a significant reduction in the total number of the hippocampal pyramidal neurons in the CA1, CA2, and CA1-3 regions in the SF group compared to the control group (p < 0.05). In the SF+KQ10 group, we found a significant increase in serum SOD level and the total number of the hippocampal pyramidal neurons in the CA1, CA2, and CA1-3 regions compared to the SF group (p < 0.05). Immunohistochemical and histopathological examination exhibited noteworthy findings in the hippocampus tissues. Our findings showed that KQ10 administration significantly mitigated the hippocampal alteration caused by SF through enhancing antioxidant enzyme activity and reducing apoptosis. However, we found no protective activity of KUR on the hippocampus tissue, which may be due to its weak antioxidative activity.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Feyza Başak
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Mürşide Ayşe Demirel
- Laboratory Animals Breeding and Experimental Research Centre, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Gazi University, Turkey
| |
Collapse
|
3
|
The Effect of Coenzyme Q10 on Liver Injury Induced by Valproic Acid and Its Antiepileptic Activity in Rats. Biomedicines 2022; 10:biomedicines10010168. [PMID: 35052847 PMCID: PMC8773341 DOI: 10.3390/biomedicines10010168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Valproic acid (VPA) has toxic metabolites that can elevate oxidative stress markers, and the hepatotoxicity of VPA has been reported. Coenzyme Q10 (CoQ10) is one of the most widely used antioxidants. The effect of CoQ10 on epileptogenesis and VPA hepatotoxicity were examined. Rats were randomly divided into five groups: the control group received 0.5% methylcellulose by oral gavages daily and saline by intraperitoneal injection three times weekly. The PTZ group received 1% methylcellulose by gavages daily and 30 mg/kg PTZ by intraperitoneal injection three times weekly. The valproic acid group received 500 mg/kg valproic acid by gavage and 30 mg/kg PTZ, as above. The CoQ10 group received 200 mg/kg CoQ10 by gavages daily and 30 mg/kg PTZ, as above. The Valproic acid + CoQ10 group received valproic acid and CoQ10, as above. Results: CoQ10 exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. CoQ10 combined with VPA induced a more significant reduction in oxidative stress and improved the histopathological changes in the brain and liver compared to VPA treatment. In addition, CoQ10 reduced the level of toxic VPA metabolites. These findings suggest that the co-administration of CoQ10 with VPA in epilepsy might have therapeutic potential by increasing antiepileptic activity and reducing the hepatotoxicity of VPA.
Collapse
|
4
|
Vaselbehagh M, Sadegh M, Karami H, Babaie S, Sakhaie MH. Coenzyme Q10 Modulates Apoptotic Effects of Chronic Administration of Methadone on NMRI Mouse Hippocampus. CELL JOURNAL 2021; 23:538-543. [PMID: 34837681 PMCID: PMC8588821 DOI: 10.22074/cellj.2021.7384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/11/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Methadone is one of the widely used drug substances prescribed in treatment of opioid dependence and pain management; however, several studies have shown its neurotoxic effects on individuals and animal models. The purpose of this study was to assess neuroprotective effects of Coenzyme Q10 (CoQ10) on neurotoxicity induced by methadone in hippocampus of adult NMRI male mice. MATERIALS AND METHODS In this experimental study, 48 adult NMRI male mice were randomly divided into 4 groups (n=12 in each) including Methadone, Methadone with sesame oil, Methadone with CoQ10 and saline. The injections of methadone, saline and sesame oil were performed intraperitoneally for 20 days. 24 hours after last injection, half of the animals in each group (n=6) were randomly assessed for evaluating of spatial memory by radial maze. Following behavioral study, animals were sacrificed, and their brains were removed to evaluate pyknotic cells through histological assessment. The remaining were used to study the expression of Arc, Bax, Bcl-2 and Bdnf genes. RESULTS Results of the present study showed that daily administration of methadone increased the number of pyknotic neurons in the CA1 hippocampus and altered the expression of Bax, Bdnf, Arc and Bcl-2. However, it did not alter spatial memory comparing to saline group. CoQ10 treatment significantly reduced the number of pyknotic cells and expression of Bax, Bdnf, Arc when compared to the vehicle group treated by sesame oil. However, the expression of Bcl-2 significantly increased as a result of CoQ10 treatment. CONCLUSION CoQ10 reduced the neuronal damage caused by methadone in the hippocampus CA1.
Collapse
Affiliation(s)
- Maryam Vaselbehagh
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saied Babaie
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hassan Sakhaie
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran,P.O.Box: 3848176941Department of AnatomyFaculty of MedicineArak University of Medical SciencesArakIran
| |
Collapse
|
5
|
Rajdev K, Mehan S. Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:446-465. [PMID: 31187715 DOI: 10.2174/1871527318666190610101144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Cerebral brain hemorrhage is associated with the highest mortality and morbidity despite only constituting approximately 10-15% of all strokes classified into intracerebral and intraventricular hemorrhage where most of the patients suffer from impairment in memory, weakness or paralysis in arms or legs, headache, fatigue, gait abnormality and cognitive dysfunctions. Understanding molecular pathology and finding the worsening cause of hemorrhage will lead to explore the therapeutic interventions that could prevent and cure the disease. Mitochondrial ETC-complexes dysfunction has been found to increase neuroinflammatory cytokines, oxidative free radicals, excitotoxicity, neurotransmitter and energy imbalance that are the key neuropathological hallmarks of cerebral hemorrhage. Coenzyme Q10 (CoQ10), as a part of the mitochondrial respiratory chain can effectively restore these neuronal dysfunctions by preventing the opening of mitochondrial membrane transition pore, thereby counteracting cell death events as well as exerts an anti-inflammatory effect by influencing the expression of NF-kB1 dependent genes thus preventing the neuroinflammation and energy restoration. Due to behavior and biochemical heterogeneity in post cerebral brain hemorrhagic pattern different preclinical autologous blood injection models are required to precisely investigate the forthcoming therapeutic strategies. Despite emerging pre-clinical research and resultant large clinical trials for promising symptomatic treatments, there are very less pharmacological interventions demonstrated to improve post operative condition of patients where intensive care is required. Therefore, in current review, we explore the disease pattern, clinical and pre-clinical interventions under investigation and neuroprotective methodologies of CoQ10 precursors to ameliorate post brain hemorrhagic conditions.
Collapse
Affiliation(s)
- Kajal Rajdev
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
6
|
Komaki H, Faraji N, Komaki A, Shahidi S, Etaee F, Raoufi S, Mirzaei F. Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 2019; 147:14-21. [DOI: 10.1016/j.brainresbull.2019.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
|
7
|
Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH. Trimethyltin chloride induces reactive oxygen species-mediated apoptosis in retinal cells during zebrafish eye development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:36-44. [PMID: 30399559 DOI: 10.1016/j.scitotenv.2018.10.317] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Trimethyltin chloride (TMT), one of the most widely used organotin compounds in industrial and agricultural fields, is widespread in soil, aquatic systems, foodstuffs and household items. TMT reportedly has toxic effects on the nervous system; however, there is limited information about its effects on eye development and no clear associated mechanisms have been identified. Therefore, in the present study, we investigated eye morphology, vison-related behavior, reactive oxygen species (ROS) production, apoptosis, histopathology, and gene expression to evaluate the toxicity of TMT during ocular development in zebrafish embryos. Exposure to TMT decreased the axial length and surface area of the eye and impaired the ability of zebrafish to recognize light. 2',7'-dichlorofluorescein diacetate and acridine orange assays revealed dose-dependent increases in ROS formation and apoptosis in the eye. Furthermore, pyknosis of retinal cells was confirmed through histopathological analysis. Antioxidative enzyme-related genes were downregulated and apoptosis-inducing genes were upregulated in TMT-treated zebrafish compared to expression in controls. Retinal cell-specific gene expression was suppressed mainly in retinal ganglion cells, bipolar cells, and photoreceptor cells, whereas amacrine cell-, horizontal cell-, and Müller cell-specific gene expression was enhanced. Our results demonstrate for the first time the toxicity of TMT during eye development, which occurs through the induction of ROS-mediated apoptosis in retinal cells during ocular formation.
Collapse
Affiliation(s)
- Jin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - C-Yoon Kim
- Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hanseul Oh
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ukjin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10. J Biosci Bioeng 2019; 127:698-702. [PMID: 30709705 DOI: 10.1016/j.jbiosc.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022]
Abstract
Coenzyme Q10 (CoQ10) plays an important role in the human respiratory chain and is widely used as medicine and dietary supplement. To improve the fermentation efficiency of CoQ10, a modified version of atmospheric and room temperature plasma (ARTP) treatment was used to mutate Rhodobacter sphaeroides. Meanwhile, Vitamin K3, a structural analog of CoQ10, was used as an inhibitor for mutant selection. In the first round of screening in 24-well plates, three mutants were obtained, with the production of CoQ10 at 311 mg/L, 307 mg/L, and 309 mg/L, which were increased from the parent's production at 265 mg/L. Furthermore, a second round of mutation and screening was performed based on the mutant strain with the highest production in the first round, leading to the identification of a mutant AR01 with the production of CoQ10 at ∼330 mg/L. Finally, 590 mg/L CoQ10 was obtained for AR01 after 100 h fermentation, which was ∼25.5% higher than that of the original parent strain. It is the first report of ARTP treatment usage for the selection of CoQ10 producing bacteria and the results show that plasma jet, driven by helium-based ARTP, can be a feasible strategy for mutation feeding.
Collapse
|
9
|
Abdelraouf ER, Kilany A, Hashish AF, Gebril OH, Helal SI, Hasan HM, Nashaat NH. Investigating the influence of ubiquinone blood level on the abilities of children with specific learning disorder. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2018; 54:39. [PMID: 30546250 PMCID: PMC6267631 DOI: 10.1186/s41983-018-0029-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/04/2018] [Indexed: 12/02/2022] Open
Abstract
Background Ubiquinone has antioxidant properties and has been linked to cognitive performance in some neuropsychiatric disorders. Its role in specific learning disorder manifestations has not been previously investigated. Therefore, the aim of this study was to measure the blood levels of ubiquinone in a group of children with specific learning disorder in comparison to typically developing children and to investigate the correlation between ubiquinone levels in children with specific learning disorder and some of their intellectual capabilities, reading, spelling and writing performance. Methods The study included 71 native Arabic speaking children: 31 in the specific learning disorder group and 40 in the typically developing (TD) group. The abilities of the children with specific learning disorder were evaluated by the Stanford-Binet Intelligence Scale-4th edition, the Dyslexia Assessment Test, and the Illinois Test of Psycholinguistic Abilities. The level of ubiquinone was measured in both groups by ELISA. Correlation between some aptitudes of children with specific learning disorder and the ubiquinone level was performed. Results The blood levels of ubiquinone in the children with specific learning disorder group were less than those in the TD group. Correlation analysis revealed a significant positive correlation between ubiquinone and the scores of backward digit span abilities. Conclusions Ubiquinone has a role in the auditory working memory performance of children with specific learning disorder (with impairment in reading). The decreased levels of ubiquinone in this sample of children with specific learning disorder could have participated in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Ehab Ragaa Abdelraouf
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,2Learning Disability Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,3Pediatric Neurology Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Adel F Hashish
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt
| | - Ola Hosny Gebril
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt
| | - Suzette Ibrahim Helal
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,4Neurology Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Haytham Mohamad Hasan
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,5Neuropsychiatry Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Neveen Hassan Nashaat
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,2Learning Disability Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.,6Phoniatric Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|