1
|
Abdelaziz MA, El-Aziz AMA, El-Sokkary MMA, Barwa R. Characterization and genetic analysis of extensively drug-resistant hospital acquired Pseudomonas aeruginosa isolates. BMC Microbiol 2024; 24:225. [PMID: 38926687 PMCID: PMC11201863 DOI: 10.1186/s12866-024-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The incidence of hospital-acquired infections in extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) has been increasing worldwide and is frequently associated with an increase in mortality and morbidity rates. The aim of this study was to characterize clinical XDR-PA isolates recovered during six months at three different hospitals in Egypt. RESULTS Seventy hospital-acquired clinical isolates of P. aeruginosa were classified into multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR), according to their antimicrobial resistance profile. In addition, the possession of genes associated with mobile genetic elements and genes encoding antimicrobial resistance determinants among isolates were detected using polymerase chain reaction. As a result, a significant percentage of the isolates (75.7%) were XDR, while 18.5% were MDR, however only 5.7% of the isolates were non-MDR. The phenotypic detection of carbapenemases, extended-spectrum β-lactamases (ESBLs) and metallo β-lactamase (MBL) enzymes showed that 73.6% of XDR-PA isolates were carbapenemases producers, whereas 75.5% and 88.7% of XDR-PA isolates produced ESBLs and MBL respectively. In addition, PCR screening showed that oxa gene was the most frequently detected gene of carbapenemases (91.4%), while aac(6')-lb gene was mostly detected (84.3%) among the screened aminoglycosides-resistance genes. Furthermore, the molecular detection of the colistin resistance gene showed that 12.9% of isolates harbored mcr-1 gene. Concerning mobile genetic element markers (intI, traA, tnp513, and merA), intI was the highest detected gene as it was amplified in 67 isolates (95.7%). Finally, phylogenetic and molecular typing of the isolates via ERIC-PCR analysis revealed 10 different ERIC fingerprints. CONCLUSION The present study revealed a high prevalence of XDR-PA in hospital settings which were resistant to a variety of antibiotics due to several mechanisms. In addition, 98% of the XDR-PA clinical isolates contained at least one gene associated with movable genetic elements, which could have aided the evolution of these XDR-PA strains. To reduce spread of drug resistance, judicious use of antimicrobial agents and strict infection control measures are therefore essential.
Collapse
Affiliation(s)
- Mai A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed M A El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Tawfick MM, Elshamy AA, Mohamed KT, El Menofy NG. Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. Infect Drug Resist 2022; 15:1077-1091. [PMID: 35321080 PMCID: PMC8934708 DOI: 10.2147/idr.s354884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). Purpose This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. Methods Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were β-lactam resistance encoding genes (blaCTX-M1, blaTEM, blaCMY-2), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6′)-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). Results PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both β-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including blaTEM (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was blaTEM-blaCTX-M1-like-qnrA-qnrB-tetA-sulI. Conclusion Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species.
Collapse
Affiliation(s)
- Mahmoud Mohamed Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (For Boys), Al-Azhar University, Cairo, 11751, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Correspondence: Mahmoud Mohamed Tawfick, Department of Microbiology and Immunology, Faculty of Pharmacy (For Boys), Al-Azhar University, 1 El-Mokhayam El-Daem Street, Nasr City, Cairo, 11751, Egypt, Tel +20 1157336676, Fax +20 238371543, Email
| | - Aliaa Ali Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Kareem Talaat Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, Giza, 11787, Egypt
| | - Nagwan Galal El Menofy
- Department of Microbiology and Immunology, Faculty of Pharmacy (For Girls), Al-Azhar University, Cairo, 11751, Egypt
| |
Collapse
|
3
|
Talukder A, Rahman MM, Chowdhury MMH, Mobashshera TA, Islam NN. Plasmid profiling of multiple antibiotic-resistant Pseudomonas aeruginosa isolated from soil of the industrial area in Chittagong, Bangladesh. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Multiple antibiotic-resistant (MAR) Pseudomonas aeruginosa (P. aeruginosa) plays a significant role in triggering nosocomial infection in clinical settings. While P. aeruginosa isolated from the environment is often regarded as non-pathogenic, the progressive development of antibiotic resistance necessitates exploring the MAR patterns and transposable genetic elements like plasmid in the isolates.
Results
Using ecfX gene-based PCR, 32 P. aeruginosa isolates among 48 soil samples collected from the industrial region have been confirmed. The antibiotic susceptibility pattern of those isolates revealed that 5 (15.63%) of them were resistant to a range of antibiotics, and they were categorized as MAR isolates. Nevertheless, all MAR isolates were found resistant to piperacillin and gentamicin, but none of them to ceftazidime, aztreonam, and ciprofloxacin. Moreover, the isolates were also showed resistance to amikacin (60%), tobramycin (80%), netilmicin (80%), imipenem (60%), doripenem (40%), meropenem (60%), and cefixime (40%). Furthermore, 60% of MAR isolates possessed double plasmids of 1000–2000 bp sizes which indicates the distribution of antibiotic resistance genes in MAR P. aeruginosa might be correlated with the presence of those plasmids. The MAR index’s high threshold values (> 0.20) implied that the isolates were from high-risk environmental sites where the presence of numerous antibiotic residues happened.
Conclusions
These findings highlighted the presence of multiple antibiotic resistance in P. aeruginosa of the industrial soil and a considerable prospect of transferring antibiotic resistance genes in the microbial community by plasmids. We recommend taking immediate stringent measures to prohibit the unnecessary and overuse of antibiotics in agricultural, industrial, or other purposes.
Collapse
|
4
|
Frequency of qnr and aac(6’)Ib-cr Genes Among ESBL-Producing Klebsiella pneumoniae Strains Isolated from Burn Patients in Kermanshah, Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Assessment of bacteria such as Klebsiella pneumonia has shown that Plasmid-mediated quinolone resistance (PMQR) affects antibiotics resistance (e.g., quinolones). Objectives: We studied the prevalence of qnr and aac(6’)Ib-cr genes in extended-spectrum beta-lactamase (ESBL)-producing K. pneumonia strains isolated from burn wounds of patients in the city of Kermanshah, Iran. Methods: This descriptive-analytical study was conducted on 126 K. pneumonia strains isolated collected from burn wounds. Biochemical tests were used to detect the strains. The frequency of the ESBL-producing isolates was determined by phenotypic tests of the combination disk (CD) method after determining the antibiotic susceptibility pattern of the isolates through the Kirby-Bauer disc diffusion test. The prevalence of the qnr and aac(6’)-Ib-cr genes was determined using their special primers as well as polymerase chain reaction (PCR). Results: Of the 126 K. pneumonia isolates, 52 (41.3%) were identified as ESBL-producing strains. ESBL-producing isolates showed higher resistance against antibiotics than non-ESBL-producing ones. PMQR relevance and resistance to ciprofloxacin were, respectively, determined at 80.76% and 59.6%. The most frequent gene was aac(6’)-Ib-cr (n = 70, 55.6%), followed by the qnrB (n = 44, 34.9%). Conclusions: This study showed a high prevalence of qnr genes in ESBL-producing K. pneumonia isolates and antibiotic resistance. Given the horizontal transmission of antibiotic resistance genes among bacteria by mobile genetic elements, timely identification of infections caused by ESBL-producing and antimicrobial-resistant K. pneumonia strains is of paramount importance.
Collapse
|
5
|
Latifi N, Karimi H. Correlation of occurrence of infection in burn patients. ANNALS OF BURNS AND FIRE DISASTERS 2017; 30:172-176. [PMID: 29849518 PMCID: PMC5946749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/09/2017] [Indexed: 06/08/2023]
Abstract
The study of burn flora is helpful in determining current antibiotic susceptibilities and locating development of multidrug resistant bacterial strains among the unit's usual flora. In this study, we aimed to determine the bacteriological pattern of blood, urine and sputum infections and their correlation with burn wound infections. We used data from our burn registry program. All data on demographics, burn wounds and burn wound infection, bacteria isolated, sensitivity to different antibiotics, burn wound culture, sputum culture, urine culture and catheter tip culture were recorded. We had 1721 hospitalized burn patients. Mean age was 26.3+/-20.25 years old. Mean hospital stay was 14.41 days (range 0-64 days). Mean (SD) TBSA was 16.48 (20.67) years. Mortality rate was 5.9%. Burn wound infection was present in 38.54%. The most frequent species was Staphylococcus spp. (55.1%), followed by Pseudomonas (14.29%), Enterococcus (12.24%), E. coli (4%), Klebsiella and Proteus (both 2%). Urine culture was positive in 27.9%, sputum culture was positive in 1.14%, catheter tip culture was positive in 12.3% and blood culture was positive in 7.6% of the cases. There were correlations between positive wound culture and blood and urine culture, most of them with one bacteria species. The most frequent disseminated bacteria was Pseudomonas aeruginosa and the most sensitive antibiotic was Amikacin. More than 39.2% of our positive culture patients had 3 or more positive cultures, and 36.5% had similar culture results for one bacteria, which was a sign of disseminated infection.
Collapse
Affiliation(s)
| | - H. Karimi
- Hamid Karimi M.D.
P.O. Box 19395-4949, TehranIran.+ 98 912 3179089+ 98 21 88770048
| |
Collapse
|
6
|
Li J, Zou M, Dou Q, Hu Y, Wang H, Yan Q, Liu WE. Characterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Ann Clin Microbiol Antimicrob 2016; 15:35. [PMID: 27215335 PMCID: PMC4877936 DOI: 10.1186/s12941-016-0148-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
Background Pseudomonas aeruginosa strains that are classed as extensively drug resistant (XDR-PA) are resistant to all antibiotics except for one or two classes and are frequently the cause of hard-to-treat infections worldwide. Our study aimed to characterize clinical XDR-PA isolates recovered during 2011–2012 at nine hospitals in the Hunan province of China. Methods Thirty-seven non-repetitive XDR-PA strains from 37 patients were investigated for genes encoding antimicrobial resistance determinants, efflux pumps, outer membrane proteins, and movable genetic elements using polymerase chain reaction (PCR). The expression of genes encoding the efflux pump component MexA and the outer membrane protein OprD was measured using real-time PCR. In addition, clonal relatedness of these XDR-PA isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Results Various genes encoding antimicrobial resistance determinants were found in all isolates. In particular, the blaTEM-1, blaCARB, armA, blaIMP-4, blaVIM-2, and rmtB, were found in 100, 37.8, 22, 22, 19 and 5 % of the isolates, respectively. Remarkably, two isolates coharbored blaIMP-4, blaVIM-2, and armA. In all 37 antibiotic-resistant strains, the relative expression of oprD was decreased while mexA was increased compared to the expression of these genes in antibiotic-susceptible P. aeruginosa strains. All of the XDR-PA isolates harbored class I integrons as well as multiple other mobile genetic elements, such as tnpU, tnp513, tnpA (Tn21), and merA. A high genotypic diversity among the strains was detected by PFGE. Conclusions Multiple antibiotic-resistance mechanisms contributed to the drug resistance of the XDR-PA isolates investigated in this study. Thus, the XDR-PA isolates in this area were not clonally related. Instead, multiple types of movable genetic elements were coharbored within each XDR-PA isolate, which may have aided the rapid development of these XDR-PA strains. This is the first report of XDR-PA strains that coharbor blaIMP-4, blaVIM-2, and armA.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China.
| | - Qingya Dou
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Wen' En Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| |
Collapse
|