1
|
Zhu L, Li S, Jiang JY, Yao ZY, Li Q, Lian SJ, Liu Q, Shi JS, Xu ZH, Gong JS. High-Level Extracellular Expression of Hyaluronate Lyase HylP in Bacillus subtilis for Hyaluronan Degradation. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04883-w. [PMID: 38411935 DOI: 10.1007/s12010-024-04883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Hyaluronate lyase (HA lyase) has potential in the industrial processing of hyaluronan. In this study, HylP, an HA lyase from Streptococcus pyogenes phage (SPB) was successfully expressed in Bacillus subtilis. To improve the extracellular enzyme activity of HylP in B. subtilis, signal peptide engineering systematic optimization was carried out, and cultured it from shake flasks and fermenters, followed by purification, characterization, and analysis of degradation products. The results showed that the replacement of the signal peptide increased the extracellular enzyme activity of HylP from 1.0 × 104 U/mL to 1.86 × 104 U/mL in the shake flask assay, and using a 20 L fermenter in a batch fermentation process, the extracellular enzyme activity achieved the level of 1.07 × 105 U/mL. HylP exhibited significant thermal and pH stability in the temperature range of 40 °C and pH range of 4-8, respectively. The enzyme showed optimum activity at 40 °C and pH 6, with significant activity in the presence of Na+, Mg2+, and Co2+ ions. Degradation analysis showed that HylP efficiently degraded hyaluronan as an endonuclease, releasing unsaturated disaccharides. These comprehensive findings underscore the substantial industrial potential of HylP for hyaluronan processing applications, offering valuable insights into enzyme characterization and optimization of expression for potential industrial utilization.
Collapse
Affiliation(s)
- Lv Zhu
- College of Light Industry and Food Engineering, Guangxi University, Daxue East Road No. 100, Nanning, 530004, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Life Sciences and Health Engineering, Ministry of Education, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Daxue East Road No. 100, Nanning, 530004, People's Republic of China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Life Sciences and Health Engineering, Ministry of Education, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Life Sciences and Health Engineering, Ministry of Education, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Qing Li
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu, 273165, People's Republic of China
| | - Shao-Jie Lian
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu, 273165, People's Republic of China
| | - Qiang Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu, 273165, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Life Sciences and Health Engineering, Ministry of Education, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Life Sciences and Health Engineering, Ministry of Education, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
2
|
Zarei-Mehrvarz E, Fahimirad S, Ghaznavi-Rad E, Abbasian SS, Abtahi H. The LL-37 Antimicrobial Peptide as a Treatment for Systematic Infection of Acinetobacter baumannii in a Mouse Model. Protein Pept Lett 2023; 30:44-53. [PMID: 36177621 DOI: 10.2174/0929866529666220929160704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The antimicrobial peptides (AMPs) played a critical role in the innate immunity of the host and are considered natural sources illustrating a broad-spectrum antimicrobial activity with high specificity and low cytotoxicity. AMPs generally possess a net positive charge and have amphipathic structures. Thus, AMPs can bind and interact with negatively charged bacterial cell membranes, leading to destructive defects in biomembranes and ending in cell death. LL37 is the only human cathelicidin-derived antimicrobial peptide that shows a broad spectrum of antimicrobial activity. MATERIALS AND METHODS To determine the antibacterial efficiency of LL37 in a mouse model of systemic A. baumannii infection, LL37 corresponding gene was expressed in E. coli, purification and refolding situations were optimized. The antimicrobial performance of produced LL-37 against A. baumannii was evaluated in vitro via MIC and Time Kill assays, and its destructive effects on the bacterial cell were confirmed by SEM image. RESULTS The recombinant LL37 showed strong antibacterial function against A. baumannii at 1.5 μg/mL concentration. Time kill assay showed a sharp reduction of cell viability during the first period of exposure, and complete cell death was recorded after 40 min exposure. CONCLUSION Furthermore, in vivo results represented a significant ability of LL37 in the treatment of systematic infected mouse models, and all infected mice receiving LL37 protein survived without no trace of bacteria in their blood samples.
Collapse
Affiliation(s)
- Ehsan Zarei-Mehrvarz
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.,Department of Medical Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
Sadelaji S, Ghaznavi-Rad E, Sadoogh Abbasian S, Fahimirad S, Abtahi H. Ib-AMP4 antimicrobial peptide as a treatment for skin and systematic infection of methicillin-resistant Staphylococcus aureus (MRSA). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:232-238. [PMID: 35655604 PMCID: PMC9124539 DOI: 10.22038/ijbms.2022.61043.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Antimicrobial peptide compounds (AMPs) play important roles in the immune system. They also exhibit significant anti-tumor and antibacterial properties. Most AMPs are cationic and are able to bind bacterial cell membranes through electrostatic affinity. Ib-AMP4 is a plant-derived AMP that exerts rapid bactericidal functions. In the present study, the antibacterial efficiency of the produced recombinant Ib-AMP4 in elimination of Methicillin-resistant Staphylococcus aureus (MRSA) bacterial infection, was investigated under in vitro and in vivo situations. MATERIALS AND METHODS The synthesized Escherichia coli codon-optimized gene sequences of the Ib-AMP4 were expressed in E. coli BL21 (DE3) pLysS. The recombinant Ib-AMP4 was purified and refolding conditions were optimized. The antibacterial efficiency of the refolded peptide against MRSA was tested under in vivo and in vitro situations for treatment of skin and systematic infection of MRSA in a mouse model. RESULTS Antibacterial assays confirmed the antibacterial function of Ib-AMP4 against MRSA. SEM results proved the destructive effects of applying Ib-AMP4 on MRSA biomembrane. Time-kill curve and growth kinetic assay illustrated rapid antibacterial activity of the produced Ib-AMP4. Moreover, Ib-AMP4 showed significant infection treatment ability in a mouse model and all infected mice receiving Ib-AMP4 protein survived and there was no trace of bacteria in their blood samples. CONCLUSION The results confirmed the rapid antibacterial potential of the produced recombinant Ib-AMP4 to be used for efficient treatment of MRSA infection.
Collapse
Affiliation(s)
- Samira Sadelaji
- Molecular and Medical Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ehsanollah Ghaznavi-Rad
- Molecular and Medical Research Center, Arak University of Medical Sciences, Arak, Iran
- Department of Medical Laboratory Sciences, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Shohreh Fahimirad
- Molecular and Medical Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medical Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Zarei M, Mosayebi G, Khansarinejad B, Abtahi H. Antigenic and immunogenic evaluation of Helicobacter pylori FlaA epitopes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:920-926. [PMID: 29085584 PMCID: PMC5651478 DOI: 10.22038/ijbms.2017.9115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective(s): Helicobacter pylori are among most common human pathogens affecting at least half of the world’s population. Mobility is one of the important primary factors in bacterial colonization and invasion. The purpose of this research is cloning, expression, and purification of FlaA protein specific epitopes in order to evaluate their antigenicity and immunogenicity. Materials and Methods: The antigenic region of the flaA gene was bioinformatically predicted using Epitope mapping software’s and the predicted epitopes were expressed in a prokaryotic expression vector. The antigen was injected into the animal model (mice BALB/c) and some indicators including IgG1, IgG2a, IgA, IFN-γ, and IL 5 were measured. Results: The immunogenicity studies in animal models by measuring serum antibodies (IgG1, IgG2a, and IgA) and cytokines (IFN-γ and IL5) revealed that the rFlaA induces a proper immune response in animal models. Conclusion: The recombinant FlaA protein is antigenic and immunogenic. Therefore, it might be used in order to design of specific diagnostic kits and recombinant vaccines against H. pylori.
Collapse
Affiliation(s)
- Mansoor Zarei
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
5
|
Khaki M, Salmanian AH, Mosayebi G, Baazm M, Babaei S, Molaee N, Abtahi H. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:791-797. [PMID: 28852444 PMCID: PMC5569598 DOI: 10.22038/ijbms.2017.9011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective(s): Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli) system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified by affinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced. Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability.
Collapse
Affiliation(s)
- Mohsen Khaki
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Ghasem Mosayebi
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak. Iran
| | - Saeed Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak. Iran
| | - Neda Molaee
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|