1
|
Unver T, Uzuner U, Celik‐Uzuner S, Gurhan I, Sivri NS, Ozdemir Z. Elucidating the antimicrobial and anticarcinogenic potential of methanolic and water extracts of edible Tragopogon coelesyriacus Boiss. Food Sci Nutr 2024; 12:7252-7272. [PMID: 39479685 PMCID: PMC11521691 DOI: 10.1002/fsn3.4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 11/02/2024] Open
Abstract
Tragopogon coelesyriacus is a pharmacotherapeutic herbaceous plant belonging to the Asteraceae family and consumed as a vegetable. Here, the methanolic and water extracts of T. coelesyriacus were obtained from its aboveground parts (stem, leaves, and flowers), and the phytochemical potentials were investigated by LC-HRMS (liquid chromatography-high resolution mass spectrometry) analysis for the first time. The antibacterial, antifungal, and anticarcinogenic activities of T. coelesyriacus extracts were investigated using experimental and in silico methods. T. coelesyriacus methanol extract revealed remarkable inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia (MICs = 0.83, 1.67, and 1.67 mg/mL, respectively) compared to Escherichia coli and Enterobacter aerogenes (MIC = 53.3 mg/mL). Inhibitory effects of T. coelesyriacus methanolic extracts were also observed in all Candida species tested, with the highest inhibition on Candida krusei (MIC = 0.83 mg/mL), whereas no inhibitory effect was identified from the water extract. Additionally, both T. coelesyriacus methanolic (IC50 = 86 μg/mL) and water (IC50 = 92 μg/mL) extracts revealed significant selective anticarcinogenic effects on AR42J pancreatic cancer cells. HeLa and MDA-MB-231 cells were, however, more resilient to methanol and water extract, respectively. In silico analyses further elucidated the noteworthy antibacterial potential of keracyanin chloride on S. aureus MurB enzyme and the remarkable inhibitory potential of naringin on FYN kinase specific for pancreatic cancer (AR42J) development. In conclusion, T. coelesyriacus phytochemicals with antibacterial, antifungal, and anticancer properties were revealed for the first time, and molecular docking studies on potential targets confirmed good agreement with experimental findings. Therefore, the current studies on T. coelesyriacus provide the basis for investigating new pharmaceutical potentials of other Tragopogon members.
Collapse
Affiliation(s)
- Tuba Unver
- Department of Pharmaceutical Microbiology, Faculty of PharmacyInonu UniversityMalatyaTurkey
| | - Ugur Uzuner
- Department of Molecular Biology and Genetics, Faculty of ScienceKaradeniz Technical UniversityTrabzonTurkey
| | - Selcen Celik‐Uzuner
- Department of Molecular Biology and Genetics, Faculty of ScienceKaradeniz Technical UniversityTrabzonTurkey
| | - Ismet Gurhan
- Department of Pharmaceutical Botany, Faculty of PharmacyInonu UniversityMalatyaTurkey
| | - Nur Sena Sivri
- Department of Molecular Biology and Genetics, Faculty of ScienceKaradeniz Technical UniversityTrabzonTurkey
| | - Zeynep Ozdemir
- Department of Pharmaceutical Chemistry, Faculty of PharmacyInonu UniversityMalatyaTurkey
| |
Collapse
|
2
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
3
|
Lazović MČ, Jović MD, Petrović M, Dimkić IZ, Gašić UM, Milojković Opsenica DM, Ristivojević PM, Trifković JĐ. Potential application of green extracts rich in phenolics for innovative functional foods: natural deep eutectic solvents as media for isolation of biocompounds from berries. Food Funct 2024; 15:4122-4139. [PMID: 38573168 DOI: 10.1039/d3fo05292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The health-promoting effects of berries have attracted attention due to the possible application of their extracts as functional ingredients in food products. Natural deep eutectic solvents (NADESs) are a new generation of environmentally friendly solvents for the extraction of natural products, and they are green alternatives to organic solvents, and they can improve the solubility, stability, and bioavailability of isolated biocompounds. In this study, an efficient eco-friendly method was used for the extraction of phenolic compounds from different berries: chokeberries, blueberries, and black goji berries with a range of eutectic solvents consisting of hydrogen bond acceptors (HBAs) such as choline chloride, L-proline, L-glycine, and L-lysine and hydrogen bond donors (HBDs) such as malic, citric, tartaric, lactic and succinic acids, glucose and glycerol. The obtained results indicated the ability of NADESs towards selective extraction of phenolics; the eutectic system choline chloride : malic acid showed selective extraction of anthocyanins, while choline chloride : glycerol and choline chloride : urea showed selectivity towards flavonoids and phenolic acids. The methodology for screening of the NADES extraction performance, which included chromatographic profiling via high-performance thin layer chromatography combined with chemometrics and spectrophotometric essays, allowed effective assessment of optimal eutectic solvents for isolation of different groups of phenolics. Great antioxidant and antimicrobial activities of extracts, along with the green nature of eutectic solvents, enable NADES berry extracts to be used as "green-labelled" functional foods or ingredients.
Collapse
Affiliation(s)
- Mila Č Lazović
- Innovation Centre of Faculty of Chemistry Ltd, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Marko D Jović
- Innovation Centre of Faculty of Chemistry Ltd, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Marija Petrović
- University of Belgrade - Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia
| | - Ivica Z Dimkić
- University of Belgrade - Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia
| | - Uroš M Gašić
- University of Belgrade - Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | | | - Petar M Ristivojević
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Jelena Đ Trifković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| |
Collapse
|
4
|
Jamshidian N, Hajiaghasi A, Amirghofran Z, Karami A, Karami K. New anthracene-based Oxime-Palladium complexes loaded on albumin nanoparticles, in vitro cytotoxicity, mathematical release mechanism studies and biological macromolecules interaction investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123513. [PMID: 37864973 DOI: 10.1016/j.saa.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
In this research work, two new palladium complexes [trans-Pd(C15H10NOCH3)2]Cl2 (1) and [cis- Pd(C15H10NOCH3)(PPh3)2Cl]Cl (2) were synthesized using an alkoxyme ligand named isophethalaldoxime. Then structure characterization has been done by FT-IR and different NMR (1H, 13C and 31P) spectroscopy. Then, their interactions with biological macromolecules including deoxyribonucleic acid and bovine serum albumin were studied using various spectroscopic methods such as UV-Vis absorption, fluorescence emission spectroscopy and circular dichroism. The results showed the binding of the prepared complexes to the deoxyribonucleic acid via grooves and different binding sites of bovine serum albumin. Fluorescence emission data showed that the mechanism of extinction of albumin emission by these compounds is static. Competitive titration was performed on albumin with eosin-Y, ibuprofen and digoxin as site markers I, II and III. The antitumor activity and toxicity of these compounds were evaluated on cancer cell lines A549 (leukemia) and K562 by in-vitro cytotoxicity test. The IC50 values showed the good activity of these complexes in inhibiting cancer cells. In the last section, the release mechanism of synthesized complexes from albumin nanoparticles (BNPs) was investigated and theoretical calculations were performed that showed Korsmeyer-Peppas mechanism for complex (1) and Quadratic mechanism for complex (2).
Collapse
Affiliation(s)
- Nasrin Jamshidian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
| | - Afsaneh Hajiaghasi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
| | - Zahra Amirghofran
- Immunology Department and Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Karami
- Medical school, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran.
| |
Collapse
|
5
|
Mansour LAH, Elshopakey GE, Abdelhamid FM, Albukhari TA, Almehmadi SJ, Refaat B, El-Boshy M, Risha EF. Hepatoprotective and Neuroprotective Effects of Naringenin against Lead-Induced Oxidative Stress, Inflammation, and Apoptosis in Rats. Biomedicines 2023; 11:biomedicines11041080. [PMID: 37189698 DOI: 10.3390/biomedicines11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Naringenin (NRG) is one of the most important naturally occurring flavonoids, predominantly found in some edible fruits, such as citrus species and tomatoes. It has several biological activities, such as antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The heavy metal lead is toxic and triggers oxidative stress, which causes toxicity in many organs, including the liver and brain. This study explored the potential protective role of NRG in hepato- and neurotoxicity caused by lead acetate in rats. Four groups of ten male albino rats were included: group 1 was a control, group 2 was orally treated with lead acetate (LA) at a dose of 500 mg/kg BW, group 3 was treated with naringenin (NRG) at a dose of 50 mg/kg BW, and group 4 was treated with 500 mg/kg LA and 50 mg/kg NRG for 4 weeks. Then, blood was taken, the rats were euthanized, and liver and brain tissues were collected. The findings revealed that LA exposure induced hepatotoxicity with a significant increase in liver function markers (p < 0.05). In addition, albumin and total protein (TP) and the albumin/globulin ratio (A/G ratio) (p < 0.05) were markedly lowered, whereas the serum globulin level (p > 0.05) was unaltered. LA also induced oxidative damage, demonstrated by a significant increase in malonaldehyde (MDA) (p < 0.05), together with a pronounced antioxidant system reduction (SOD, CAT, and GSH) (p < 0.05) in both liver and brain tissues. Inflammation of the liver and brain caused by LA was indicated by increased levels of nuclear factor kappa beta (NF-κβ) and caspase-3, (p < 0.05), and the levels of B-cell lymphocyte-2 (BCL-2) and interleukin-10 (IL-10) (p < 0.05) were decreased. Brain tissue damage induced by LA toxicity was demonstrated by the downregulation of the neurotransmitters norepinephrine (NE), dopamine (DA), serotonin (5-HT), and creatine kinase (CK-BB) (p < 0.05). Additionally, the liver and brain of LA-treated rats displayed notable histopathological damage. In conclusion, NRG has potential hepato- and neuroprotective effects against lead acetate toxicity. However, additional research is needed in order to propose naringenin as a potential protective agent against renal and cardiac toxicity mediated by lead acetate.
Collapse
Affiliation(s)
- Lubna A. H. Mansour
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Talat A. Albukhari
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah P.O. Box 6165, Saudi Arabia
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Engy F. Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Phenolic Content and Antioxidant and Antimicrobial Activities of Malva sylvestris L., Malva oxyloba Boiss., Malva parviflora L., and Malva aegyptia L. Leaves Extract. J CHEM-NY 2021. [DOI: 10.1155/2021/8867400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background. The plants brought by Arabs were of real therapeutic values. Ibn Al-Baitar, an Islamic scholar (pharmacist, botanist, and physician), in his encyclopedia wrote the detailed characterization of more than one thousand herbs describing their medicinal value, methods of preparation, and their route of administration. Objectives. The current investigation points towards the quantitative characterization of the phenolic contents among the four edible Malva plants species (Malva sylvestris L., Malva oxyloba Boiss., Malva parviflora L., and Malva aegyptia L.) and also towards assessing their antibacterial activity against one Gram-positive isolate (Staphylococcus aureus) and four Gram-negative strains Escherichia coli, Pseudomonas aeruginosa, Shigella sonnei, and Proteus vulgaris. It also aimed to evaluate the free radical scavenging activity of hexane, methanolic, aqueous, and acetone extracts of four Malva species. Methods. By utilizing the Folin–Ciocalteu procedure and gallic acid as a reference molecule, the phenolic contents were estimated. In addition, the broth microdilution method was used to evaluate four plants’ 16 extracts, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) method was utilized to assess the abovementioned extracts against oxidative stress. Results. The results showed that the methanolic extract of M. oxyloba has the highest contents of phenols (191.54 ± 2.84 mg of GAE/g) and has the best antioxidant capacity with an IC50 value of 1.94 ± 1.84 µg/ml, which is very close to Trolox. Regarding the ferrous ion chelating activity of the extract, the methanolic extract of M. sylvestris exhibits appreciable activity with IC50 values of 52.7 ± 1.8 µg/ml. In addition, the plant extract and acetone extract of M. sylvestris showed a strong antibacterial activity with an MIC value of 0.0078 mg/ml. Conclusion. The methanolic extract of M. oxyloba has a pharmacological potential as a valuable natural product that can be utilized as a main ingredient in the design and development of new therapeutic formulations. It exerts multiple inhibitory properties against oxidative stress and bacterial growth. As such, it is emerging as a promising therapeutic agent for the treatment of various neurodegenerative diseases and many types of human infectious diseases.
Collapse
|
7
|
Teucrium leucocladum: An Effective Tool for the Treatment of Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3272103. [PMID: 33293988 PMCID: PMC7718044 DOI: 10.1155/2020/3272103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Teucrium leucocladum is among the most used traditional medicinal plants in Palestine, which is used for the treatment of hyperglycemia and colon spasms from ancient times. Therefore, the current investigation aimed for the first time to determine the hypoglycemic, hypolipidemic, and oxidative stress inhibitory effects of the aerial parts (stem and leaves) of T. leucocladum hydrophilic (water) extract in streptozotocin- (STZ-) induced diabetic rats (65 mg/kg), given intraperitoneally at a dose of 100 mg/kg for 21 days. The rats were divided into four groups as control (C), control + T. leucocladum extract (C + TL), diabetes (D), and diabetes + T. leucocladum extract (D + TL). The antioxidant activity was analyzed using in vitro 2,2-diphenyl-1-picrylhydrazyl and in vivo methods by measuring the plasma and tissue malondialdehyde (MDA) levels using a colorimetric assay. On the other hand, glutathione peroxidase (GSH-Px), erythrocyte superoxide dismutase (SOD) enzyme levels, serum paraoxonase (PON), and arylesterase (ARE) enzyme activities were assessed by utilizing standard biochemical kits. Besides, the blood glucose and serum insulin levels were assessed by a glucometer and Rat ELISA Kit, respectively. However, the autoanalyzer was used to evaluate the lipid profile. The diabetic rat group that administered T. leucocladum extract showed the best reduction in the tissue and plasma MDA levels and an increase of insulin-releasing potentials. Besides, the serum PON and ARE activities and erythrocyte superoxide dismutase and whole blood glutathione peroxidase enzyme levels were significantly increased in all animals treated with T. leucocladum extract. The current investigation demonstrated that T. leucocladum manifests antihyperglycemic and antihyperlipidemic effects and also increased the antioxidative defense system and reduced the lipid peroxidation process in experimental diabetic rats.
Collapse
|
8
|
Glechoma curviflora Volatile Oil from Palestine: Chemical Composition and Neuroprotective, Antimicrobial, and Cyclooxygenase Inhibitory Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4195272. [PMID: 33299451 PMCID: PMC7707961 DOI: 10.1155/2020/4195272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
The rise of the emergence of microbial resistance of antibiotics, the dangerous side effects of nonsteroidal anti-inflammatory drugs, and noncompetent medications of Alzheimer's, Parkinson's, and other neurodegenerative diseases prompt scientists to search for phytochemicals that could be utilized in the remedy of lethal diseases. Glechoma curviflora (Boiss.) Kuntze (Nepeta curviflora) is a medicinal herb growing in the eastern parts of the Mediterranean Sea Basin and is widely consumed as a tea. The leaves of this plant have been traditionally used for the treatment of various infectious diseases. The current research was designed to identify the chemical composition of Glechoma curviflora (Boiss.) essential oil (EO) and to assess its antibacterial, antifungal, and cyclooxygenase inhibitory activities and the biophysical gating effect on AMPA receptors. Twenty phytochemicals were identified from G. curviflora leaves and flowers EO amounting to almost 100% of the total constituents using GC-MS technique, of which 1,6-dimethylspiro[4.5]decane (27.51%) 1, caryophyllene oxide (20.08%) 2, and β-caryophyllene (18.28%) 3 were the main constituents. The biophysical properties' effect from the plant extract on various AMPA-type receptors expressed in Human Embryonic Kidney (HEK293) cells was assessed by exploiting the whole-cell patch-clamp technique. Microdilution assay was adopted for assessing the antimicrobial property against eight virulent microbial strains whilst the cyclooxygenase inhibition effect was accomplished utilizing COX inhibitory screening colorimetric assay G. curviflora EO displayed potent activity against P. aeruginosa (MIC = 1.25 μg/mL), S. sonnei (MIC = 3.12 μg/mL), and E. coli (MIC = 1.25 μg/mL), compared with ciprofloxacin (positive control) and potent antibacterial activity against S. aureus, MRSA, S. sonnei, E. coli, and P. aeruginosa compared to Ampicillin (2nd positive control). It also showed anti-Candida (MIC = 6.25 μg/mL) and antimold (MIC = 3.125 μg/mL) activities compared with fluconazole (antifungal positive control). Likewise, our results showed an inhibition and biophysical impact of G. curviflora on all AMPARs subunits.
Collapse
|