1
|
Kumari R, Jaiswal H, Chowdhury T, Ghosh A. Antibody conjugated magnetic nanoparticle based colorimetric assay for the detection and quantification of aflatoxin B1 in wheat grains. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin B1 (AFB1) is a most potent carcinogenic secondary metabolite produced by Aspergillus flavus. As a food safety concern, development of a rapid, cost effective, sensitive and easy to use method for the detection of aflatoxin is of prime requirement. In this study, AFB1 was conjugated with bovine serum albumin (BSA), and AFB1-BSA conjugate was purified by HPLC. Purification was confirmed by UV-Vis spectroscopy, FTIR and MALDI-TOF mass spectrometry. The polyclonal antibody was raised against AFB1-BSA conjugate in rabbit and purified by protein A sepharose and BSA sepharose affinity columns. Iron oxide nanoparticles (MNPs) were synthesised by co-precipitation method and their surface was functionalised with (3-aminopropyl) triethoxysilane (APTES). Size of APTES conjugated MNPs was determined by electron microscopy, and characterised by several biophysical techniques. The purified anti-AFB1 antibody was conjugated with surface functionalised MNPs and the conjugation was confirmed by determining the sizes of free and antibody conjugated MNPs by field emission scanning electron microscope where increase of particle sizes from 10-20 to 40-50 nm was observed due to antibody conjugation. Anti-AFB1 antibody conjugated MNPs were used for capturing AFB1 from the aflatoxin spiked wheat grains with a recovery percentage of more than 80% and used effectively five times. The captured AFB1 was then quantified by a sensitive colorimetric assay where colourless AFB1 was first converted into coumaric acid by NaOH. Subsequently, coumaric acid reacted with 2,6-dibromoquinone-4-chloroimide (DBQC) to a green-coloured indophenol product which was quantified spectrophotometrically. AFB1 contamination as low as 2 μg/kg in wheat grains was detected by the developed technique suggesting its potential application for both qualitative and quantitative analysis of aflatoxins present in feed and food materials.
Collapse
Affiliation(s)
- R. Kumari
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - H. Jaiswal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - T. Chowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A.K. Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Hedayati MT, Mahdavi Omran S, Soleymani A, Taghizadeh Armaki M. Aflatoxins in Food Products in Iran: a Review of the Literature. Jundishapur J Microbiol 2016; 9:e33235. [PMID: 27679702 PMCID: PMC5035393 DOI: 10.5812/jjm.33235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Context Mycotoxins are secondary metabolites produced by certain toxigenic fungi and the most of them are aflatoxins, fumonisins, trichothecenes, ochratoxin A, patulin, and zearalenone. Evidence Acquisition In consideration of the consumption of certain farm products for animal feed and the prevalence of toxigenic fungi and mycotoxins in food, the present study was performed to evaluate this situation in Iran with a review of the literature using search engines. All published articles were selected using Iran Medex, Magiran, PubMed NCBI, and Google Scholar. Results Aflatoxins have been found in many food products in Iran. Conclusions It is necessary to detect aflatoxins in foods and food products as early as possible, before they enter human or animal bodies. There is a high consumption of milk and dairy products in Iran, and the proper management of animal foods can help to decrease the aflatoxins in milk.
Collapse
Affiliation(s)
- Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Saeid Mahdavi Omran
- Infectious Diseases & Tropical Medicine Research Center, and Department of Medical Parasitology and Mycology, Babol University of Medical Sciences, Babol, IR Iran
- Corresponding author: Saeid Mahdavi Omran, Infectious Diseases & Tropical Medicine Research Center, and Department of Medical Parasitology and Mycology, Babol University of Medical Sciences, Babol, IR Iran. Tel: +98-1132199936, E-mail:
| | - Abbas Soleymani
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, IR Iran
| | - Mojtaba Taghizadeh Armaki
- Invasive Fungi Research Center, Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| |
Collapse
|
3
|
Peng D, Yang B, Pan Y, Wang Y, Chen D, Liu Z, Yang W, Tao Y, Yuan Z. Development and validation of a sensitive monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the determination of the aflatoxin M1 levels in milk. Toxicon 2016; 113:18-24. [PMID: 26867714 DOI: 10.1016/j.toxicon.2016.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 11/28/2022]
Abstract
A sensitive monoclonal antibody (mAb) against aflatoxin M1 (AFM1) was generated to quickly monitor the AFM1 residues in milk. Then, a mAb-based indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established that utilizes simple sample preparation and clean-up methods. The obtained 3D8 mAb, which is an IgG1 isotype mAb, displayed an IC50 value of 64.75 ng L(-1) for AFM1 and did not exhibit measurable cross-reactivity with other aflatoxins and antibiotics. The decision limit (CCα, α = 1%), detection capability (CCβ, β = 5%), and LOQ value for the AFM1 matrix calibration method were 24 ng L(-1), 27.5 ng L(-1), and 35 ng L(-1) in the milk matrices, respectively. The AFM1 recovery ranged from 85.3% to 107.6%. The CVs were less than 13.8%. A positive correlation (r > 0.99) was observed between the ic-ELISA and HPLC-MS/MS results. This ic-ELISA would be a useful tool for screening the AFM1 residues in milk.
Collapse
Affiliation(s)
- Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bijia Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenxiang Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|