Potent in vitro antileishmanial activity of a nanoformulation of cisplatin with carbon nanotubes against Leishmania major.
J Glob Antimicrob Resist 2018;
16:11-16. [PMID:
30244039 DOI:
10.1016/j.jgar.2018.09.004]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES
The aim of this study was to evaluate the cytotoxicity and antileishmanial activity of cisplatin-bonded carbon nanotubes both against promastigotes and amastigotes of Leishmania major in vitro.
METHODS
Cisplatin-bonded single-walled carbon nanotubes (CP-SWCNT) and cisplatin-bonded multi-walled carbon nanotubes (CP-MWCNT) were considered as test compounds. In addition, SWCNT, MWCNT, free cisplatin and meglumine antimoniate (Glucantime®) were considered as controls. The effect of each compound was evaluated both on promastigote and amastigote stages of L. major and the results were compared.
RESULTS
There was a statistically significant difference between the half-maximal inhibitory concentration (IC50) of CP-SWCNT and each of the controls, including SWCNT, cisplatin and Glucantime® (P<0.05). In addition, IC50 values of CP-MWCNT and each of the controls, including MWCNT, cisplatin and Glucantime®, were significantly different both for promastigotes and amastigotes (P<0.05). However, the selectivity index (SI) of CP-SWCNT was <10 (5.23), indicating that this compound is not completely safe. Moreover, the SI values of CP-MWCNT (12.54) and Glucantime® (16.28) were >10, indicating the selective effect of these two compounds on the parasite. Moreover, the IC50 of CP-MWCNT (0.11±0.09μM) for amastigotes was 41-fold lower than that of Glucantime® (4.52±1.31μM), suggesting that a lower dose of CP-MWCNT in comparison with Glucantime® is required to kill 50% of amastigotes.
CONCLUSIONS
According to the potent in vitro antileishmanial activity of CP-MWCNT at low concentration against L. major, we suggest that they are evaluated in an animal model.
Collapse