1
|
ShamsEldeen AM, Fawzy A, Ashour H, Abdel-Rahman M, Nasr HE, Mohammed LA, Abdel Latif NS, Mahrous AM, Abdelfattah S. Hibiscus attenuates renovascular hypertension-induced aortic remodeling dose dependently: the oxidative stress role and Ang II/cyclophilin A/ERK1/2 signaling. Front Physiol 2023; 14:1116705. [PMID: 37415906 PMCID: PMC10321301 DOI: 10.3389/fphys.2023.1116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: The high levels of angiotensin II (Ang II) can modify the vascular tone, enhance vascular smooth muscle cells (VSMCs) proliferation and hypertrophy and increase the inflammatory cellular infiltration into the vessel wall. The old herbal nonpharmacological agent, Hibiscus (HS) sabdariffa L has multiple cardioprotective impacts; thus, we investigated the role of HS extract in amelioration of renovascular hypertension (RVH)-induced aortic remodeling. Materials and methods: Thirty-five rats (7/group) were randomly allocated into 5 groups; group: I: Control-sham group, and RVH groups; II, III, IV, and V. The rats in RVH groups were subjected to the modified Goldblatt two-kidneys, one clip (2K1C) for induction of hypertension. In group: II, the rats were left untreated whereas in group III, IV, and V: RVH-rats were treated for 6 weeks with low dose hibiscus (LDH), medium dose hibiscus (MDH), and high dose hibiscus (HDH) respectively. Results: We found that the augmented pro-contractile response of the aortic rings was ameliorated secondary to the in-vivo treatment with HS dose dependently. The cyclophilin A (CyPA) protein levels positively correlated with the vascular adhesion molecule-1 (VCAM-1) and ERK1/2, which, in turn, contribute to the reactive oxygen species (ROS) production. Daily HS intake modified aortic renovation by enhancing the antioxidant capacity, restraining hypertrophy and fibrosis, downregulation of the metastasis associated lung adenocarcinoma transcript (MALAT1), and cyclophilin A (CyPA)/ERK1/2 levels. Discussion: Adding to the multiple beneficial effects, HS aqueous extract was able to inhibit vascular smooth muscle cell proliferation induced by 2K1C model. Thus, adding more privilege for the utilization of the traditional herbal extracts to attenuate RVH-induced aortopathy.
Collapse
Affiliation(s)
| | - Ahmed Fawzy
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Marwa Abdel-Rahman
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Benha University, Benha, Egypt
| | | | | | - Amr M. Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, Al Sharquia, Egypt
| | - Shereen Abdelfattah
- Department of Anatomy and Embryology Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Hassanein EHM, Ali FEM. Candesartan Protects Against Cadmium-Induced Hepatorenal Syndrome by Affecting Nrf2, NF-κB, Bax/Bcl-2/Cyt-C, and Ang II/Ang 1-7 Signals. Biol Trace Elem Res 2023; 201:1846-1863. [PMID: 35590119 PMCID: PMC9931870 DOI: 10.1007/s12011-022-03286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a serious pollutant in the environment. Candesartan is an angiotensin II (Ang II) receptor antagonist with promising diverse health benefits. The current study is planned to investigate the hepatorenal protective effects of candesartan against Cd-induced hepatic and renal intoxication. Our results demonstrated that candesartan effectively attenuated Cd-induced hepatorenal intoxication, as evidenced by improving hepatic and renal function biomarkers. Besides, candesartan reversed hepatic and renal histopathological abrasions induced by Cd toxicity. Candesartan antioxidant effect was mediated by Nrf2 activation. Also, candesartan suppressed hepatorenal inflammation by modulating NF-κB/IκB. Moreover, candesartan attenuated Cd hepatorenal apoptosis by upregulating Bcl-2 and downregulating Bax and Cyt-C proteins. Interestingly, these effects are suggested to be an outcome of modulating of Ang II/Ang 1-7 signal. Overall, our findings revealed that candesartan could attenuate Cd-induced hepatorenal intoxication through modulation of Nrf2, NF-κB/IκB, Bax/Bcl-2/Cyt-c, and Ang II/Ang 1-7 signaling pathways.
Collapse
Affiliation(s)
- Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
3
|
Fooladi M, Shirazi A, Sheikhzadeh P, Amirrashedi M, Ghahramani F, Cheki M, Khoobi M. Investigating the attenuating effect of telmisartan against radiation-induced intestinal injury using 18F-FDG micro-PET imaging. Int J Radiat Biol 2022; 99:446-458. [PMID: 35930426 DOI: 10.1080/09553002.2022.2110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND OBJECTIVE This study was aimed to investigate the ability of 18F-Fluro-deoxy-glucose (18F-FDG)-based micro-positron emission tomography (microPET) imaging to evaluate the efficacy of telmisartan, a highly selective angiotensin II receptor antagonist (ARA), in intestinal tissue recovery process after in vivo irradiation. METHODS Male Balb/c mice were randomly divided into four groups of control, telmisartan, irradiation, and telmisartan + irradiation. A solution of telmisartan in phosphate-buffered saline (PBS) was administered orally at 12 mg/kg body weight for seven consecutive days prior to whole body exposing to a single sub-lethal dose of 5 Gy X-rays. The mice were imaged using 18F-FDG microPET at 9 and 30 days post-irradiation. The 18F-FDG uptake in jejunum was determined according to the mean standardized uptake value (SUVmean) index. Tissues were also processed in similar time points for histological analysis. RESULTS The 18F-FDG microPET imaging confirmed the efficacy of telmisartan as a potent attenuating agent for ionizing radiation-induced injury of intestine in mice model. The results were also in line with the histological analysis indicating that pretreatment with telmisartan reduced damage to the villi, crypts, and intestinal mucosa compared with irradiated and non-treated group from day 9 to 30 after irradiation. CONCLUSION The results revealed that 18F-FDG microPET imaging could be a good candidate to replace time-consuming and invasive biological techniques for screening of radioprotective agents. These findings were also confirmed by histological examinations which indicated that telmisartan can effectively attenuates radiation injury caused by ionizing-irradiation.
Collapse
Affiliation(s)
- Masoomeh Fooladi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghahramani
- Radiotherapy-Oncology Center, Yas Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Suliburska J, Skrypnik K, Szulińska M, Kupsz J, Markuszewski L, Bogdański P. Diuretics, Ca-Antagonists, and Angiotensin-Converting Enzyme Inhibitors Affect Zinc Status in Hypertensive Patients on Monotherapy: A Randomized Trial. Nutrients 2018; 10:nu10091284. [PMID: 30208601 PMCID: PMC6164079 DOI: 10.3390/nu10091284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Antihypertensive drugs affect mineral metabolism, inflammation, and the oxidative state. The aim of this study was to evaluate the effects of antihypertensive monopharmacotherapy with diuretics, β-blockers, calcium antagonists (Ca-antagonists), angiotensin-converting enzyme inhibitors (ACE-I), and angiotensin II receptor antagonists (ARBs) on zinc (Zn), iron (Fe), and copper (Cu) status, parameters of oxidative and inflammatory states, and glucose and lipid metabolism in patients with newly diagnosed primary arterial hypertension (AH). Methods: Ninety-eight hypertensive subjects received diuretics, β-blockers, Ca-antagonists, ACE-I, or ARB for three months. Zn, Fe, and Cu concentrations were determined in blood, urine, and hair. Results: A decrease in zinc serum and erythrocyte concentration and an increase in zinc urine concentration were registered after diuretic administration. Ca-antagonists led to a decrease in erythrocyte zinc concentration. A decrease in serum zinc concentration was observed after ACE-I. A decrease in triglyceride serum concentration was noted after ACE-I therapy, and a decrease in tumor necrosis factor-α serum concentration was seen following administration of Ca-antagonists. Hypotensive drugs led to decreases in catalase and superoxide dismutase serum concentrations. Conclusions: Three-months of monotherapy with diuretics, Ca-antagonists, or ACE-I impairs zinc status in patients with newly diagnosed primary AH. Antihypertensive monopharmacotherapy and zinc metabolism alterations affect lipid metabolism, the oxidative state, and the inflammatory state.
Collapse
Affiliation(s)
- Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznań, Poland.
| | - Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznań, Poland.
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569 Poznań, Poland.
| | - Justyna Kupsz
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego St. 6, 61-781 Poznań, Poland.
| | - Leszek Markuszewski
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Łódź, Poland.
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569 Poznań, Poland.
| |
Collapse
|
5
|
Prado FP, dos Santos DO, Blefari V, Silva CA, Machado J, Kettelhut IDC, Ramos SG, Baruffi MD, Salgado HC, Prado CM. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure. PLoS One 2017; 12:e0189469. [PMID: 29267303 PMCID: PMC5739420 DOI: 10.1371/journal.pone.0189469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps). Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH) and 30% hypertrophic+dilated hearts (HD). Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy.
Collapse
Affiliation(s)
- Fernanda P. Prado
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniele O. dos Santos
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Valdecir Blefari
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A. Silva
- Department of Phisiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Biochemistry/Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis do Carmo Kettelhut
- Department of Biochemistry/Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Simone G. Ramos
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Dias Baruffi
- Department of Clinical Analysis, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio C. Salgado
- Department of Phisiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cibele M. Prado
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
6
|
Chu L, Li P, Song T, Han X, Zhang X, Song Q, Liu T, Zhang Y, Zhang J. Protective effects of tannic acid on pressure overload-induced cardiac hypertrophy and underlying mechanisms in rats. J Pharm Pharmacol 2017. [DOI: 10.1111/jphp.12763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The aim of this study was to examine the cardioprotective effects and latent mechanism of tannic acid (TA) on cardiac hypertrophy.
Methods
Abdominal aortic banding (AAB) was used to induce pressure overload-induced cardiac hypertrophy in male Wistar rats, sham-operated rats served as controls. AAB rats were treated with TA (20 and 40 mg/kg) or captoril.
Key findings
Abdominal aortic banding rats that received TA showed ameliorated pathological changes in cardiac morphology and coefficients, decreased cardiac hypertrophy and apoptosis, a reduction in over expressions of angiotensin type 1 receptor (AT1R), angiotensin type 2 receptor (AT2R), phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β (TGF-β) mRNA, and modified expression of matrix metal proteinase-9 (MMP-9) mRNA in AAB rat hearts. Furthermore, TA treatment contributed to a decrease in malondialdehyde (MDA) and endothelin-1 (ET-1) activities and content, while it caused an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelial NO synthase (e-NOS). Furthermore, TA downregulated expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), bax, caspase-3 and upregulated expression of bcl-2.
Conclusions
Tannic acid displayed obvious suppression of AAB-induced cardiac hypertrophy in rats. The cardioprotective effects of TA may be attributed to multitargeted inhibition of oxidative stress, inflammation, fibrosis and apoptosis in addition to an increase in NO levels, decrease in ET-1 levels, and downregulation of angiotensin receptors and the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Li Chu
- Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pinya Li
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Han
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qiongtao Song
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Liu
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuanyuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|