1
|
Ha YS, Kim TK, Park KS, Hwang S, Kim J, Kim SJ. Inhibitory effects of Rocaglamide-A on PPARγ-driven adipogenesis through regulation of mitotic clonal expansion involving the JAK2/STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159148. [PMID: 35248800 DOI: 10.1016/j.bbalip.2022.159148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
Inhibition of adipogenesis is an important strategy for obesity treatment. Rocaglamide-A (Roc-A) is a natural herbal medicine isolated from the genus Aglaia (family Meliaceae), which has a cyclopenta[b]benzofuran core structure. Roc-A exhibits various pharmacological effects against diverse human cancer cells. However, the exact role of Roc-A during adipogenesis in adipocytes has not been studied at all. In this study, we demonstrate that Roc-A is crucial for reducing adipogenesis via downregulating PPARγ transcriptional activity. Consistently, Western-blot and RT-PCR analyses clearly showed that Roc-A inhibits the expression of PPARγ target genes and lipogenic markers in a dose-dependent manner along with suppression of lipid accumulation, in both 3T3-L1 cells and mouse adipose-derived stem cells. Mechanistically, Roc-A significantly decreased JAK2/STAT3 phosphorylation in a dose-dependent manner in 3T3-L1 adipocytes. In particular, we confirmed that Roc-A effectively suppressed the expression of genes involved in cell-cycle regulation, such as cyclin A, B, D1, and E1, early during mitotic clonal expansion in 3T3-L1 adipocytes, and this effect was abolished by the JAK2/STAT3 activator FGF2. Taken together, our results demonstrated that Roc-A reduces adipogenesis by inhibiting PPARγ transactivation and JAK2/STAT3 phosphorylation and thus may serve as a therapeutic target in obesity.
Collapse
Affiliation(s)
- Yoon-Su Ha
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, 24341 Chuncheon, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Taek-Kyong Kim
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, 24341 Chuncheon, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, 24341 Chuncheon, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea.
| |
Collapse
|
2
|
Choi HJ, Kim ES. Conjugated Linoleic Acid Negatively Regulates TR4 Activity in 3T3-L1 Adipocytes. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.3.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
3
|
Choi HJ, Kim ES. TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.3.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|