1
|
Bueno Cordeiro Maldonado M, de Castro Lourenço V, de Oliveira Bezerra L, Feltrin IR, Mendes AF, Rocha CC, Pugliesi G, Ealy AD, Membrive CMB, Nogueira MFG. Conjugated linoleic acid supplementation changes prostaglandin concentration ratio and alters the expression of genes involved in maternal-fetal recognition from bovine trophoblast cells in vitro. Theriogenology 2023; 206:87-95. [PMID: 37201299 DOI: 10.1016/j.theriogenology.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 04/02/2023] [Indexed: 05/20/2023]
Abstract
Early embryonic mortality caused by maternal-fetal recognition failure in the three weeks after fertilization represents a major cause of reproductive inefficiency in the cattle industry. Modifying the amounts and ratios of prostaglandin (PG) F2α and PGE2 can benefit the establishment of pregnancy in cattle. Adding conjugated linoleic acid (CLA) to endometrial and fetal cells culture affects PG synthesis, but its effect on bovine trophoblast cells (CT-1) is unknown. The aim of this study was to determine the effects of CLA (a mixture of cis- and trans-9, 11- and -10,12-octadecadienoic acids) on PGE2 and PGF2α synthesis and the expression of transcripts involved with maternal-fetal recognition of bovine trophectoderm. Cultures of CT-1 were exposed to CLA for 24, 48 and 72 h. Transcript abundance was determined by qRT-PCR and hormone profiles were quantified by ELISA. The PGE2 and PGF2α concentrations were reduced in the culture medium of CLA-exposed CT-1 compared to that of unexposed cells. Furthermore, CLA supplementation increased the PGE2:PGF2α ratio in CT-1 and had a quadratic effect (P < 0.05) on the relative expression of MMP9, PTGES2, and PTGER4. The relative expression levels of PTGER4 were reduced (P < 0.05) in CT-1 cultured with 100 μM CLA than in the unsupplemented and 10 μM-CLA groups. Treatment of CT-1 with CLA decreased PGE2 and PGF2α synthesis but a biphasic effect of CLA was observed on the PGE2:PGF2α ratio and relative abundance of transcripts with 10 μM CLA providing maximal improvements in each endpoint. Our data suggest that CLA may influence eicosanoid metabolic process and extracellular matrix remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guilherme Pugliesi
- University of São Paulo (USP-FMVZ), Pirassununga, São Paulo, 13635-900, Brazil
| | - Alan D Ealy
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | | |
Collapse
|
2
|
Paszczyk B, Czarnowska-Kujawska M, Klepacka J, Tońska E. Health-Promoting Ingredients in Goat's Milk and Fermented Goat's Milk Drinks. Animals (Basel) 2023; 13:907. [PMID: 36899767 PMCID: PMC10000185 DOI: 10.3390/ani13050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The present study aimed to determine the content of health-promoting compounds, and fatty acids, with particular emphasis on the content of cis9trans11 C18:2 (CLA) acid, selected minerals, folates in organic and commercial goat's milk and fermented goat's milk drinks. The analyzed milk and yoghurts had various contents of particular groups of fatty acids, CLA, minerals, and folates. Raw organic goat's milk had a significantly (p < 0.05) higher content of CLA (3.26 mg/g fat) compared to commercial milk (2.88 mg/g fat and 2.54 mg/g fat). Among the analyzed fermented goat's milk drinks, the highest CLA content (4.39 mg/g fat) was determined in commercial natural yoghurts, while the lowest one was in organic natural yoghurts (3.28 mg/g fat). The highest levels of calcium (1322.9-2324.4 µg/g), phosphorus (8148.1-11,309.9 µg/g), and copper (0.072-0.104 µg/g) were found in all commercial products and those of manganese (0.067-0.209 µg/g) in organic products. The contents of the other assayed elements (magnesium, sodium, potassium, iron, and zinc) did not depend on the production method, but only on the product type, i.e., the degree of goat's milk processing. The highest folate content in the analyzed milks was found in the organic sample (3.16 µg/100 g). Organic Greek yoghurts had a several times higher content of folates, reaching 9.18 µg/100 g, compared to the other analyzed fermented products.
Collapse
Affiliation(s)
| | | | - Joanna Klepacka
- Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland
| | | |
Collapse
|
3
|
Cheese and Butter as a Source of Health-Promoting Fatty Acids in the Human Diet. Animals (Basel) 2022; 12:ani12233424. [PMID: 36496944 PMCID: PMC9741069 DOI: 10.3390/ani12233424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of fatty acid composition, including the content of conjugated linoleic acid cis9trans11 C18:2 (CLA) and trans C18:1 and C18:2 isomers in fat extracted from selected high-fat dairy products commonly available to consumers in retail sale on the Polish market, and a comparison of their indicators as to the quality of lipids was the aim of the study. The experimental materials were hard cheeses, white-mold cheeses, blue-veined cheeses, and butters. The conducted study demonstrated that various contents of groups of fatty acids and the values of lipid quality indices were found in the tested products. Butters turned out to be richer sources of short-chain, branched-chain, and odd-chain fatty acids. The fat extracted from butters and white-mold cheeses had a significantly higher (p < 0.05) content of n-3 fatty acids. Lower values of the n-6/n-3 ratio were determined in the fat extracted from butters and white-mold cheeses. The highest values of the thrombogenicity index (TI) were found in fat extracted from hard cheeses. Significantly lower values (p < 0.05) of the atherogenicity index (AI) and values of the H/H ratio were found in fat from mold cheeses. Fat from butters and white-mold cheeses had a significantly higher (p < 0.05) content of CLA and total content of trans C18:1.
Collapse
|
4
|
Fatty Acid Content, Lipid Quality Indices, and Mineral Composition of Cow Milk and Yogurts Produced with Different Starter Cultures Enriched with Bifidobacterium bifidum. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study aimed to analyze the composition of fatty acids, with particular emphasis on the content of cis9trans11 C18:2 (CLA) acid, the content of minerals, and lipid quality indices in raw milk, pasteurized milk, and in yogurts produced with selected starter cultures enriched with Bifidobacterium bifidum. The GC-FID method was used to determine the fatty acid composition of those dairy products. To analyze the contents of microelements (copper, manganese, iron, and zinc) and macroelements (magnesium, calcium) flame atomic absorption spectrometry was used. The content of phosphorus was determined with the usage of the colorimetric method and the contents of sodium and potassium with emission method. Data analysis showed that such technologies as milk pasteurization and milk fermentation had a significant impact on the fatty acid profile and contents of micro- and macroelements. The lipid quality indices: atherogenicity index (AI), index thrombogenicity (TI), hypocholesterolemic/hypercholesterolemic index (H/H), and (n − 6)/(n − 3) ratio, were at similar levels in raw and pasteurized milk and yogurts produced. Starter culture type affected the content of cis-9, trans-11 CLA C18:2 acid in yogurts. Out of the starter cultures applied in the study, only the FD-DVS YC-X16 Yo-Flex starter culture with BB-12 caused a significant (p < 0.05) increase in CLA content. The CLA content of the yogurts produced using this starter culture was 2.67 mg/g fat. In raw milk, pasteurized milk, and the second batch of yogurts, the content of cis-9, trans-11 C18:2 acid was significantly lower and reached 2.26 mg/g fat, 2.17 mg/g fat, and 2.30 mg/g fat, respectively. The study indicated that, when it comes to being a source of minerals, yogurts were better than milk. Yogurts were also characterized by significantly (p < 0.05) higher contents of all micro- and macroelements taken into account in this study than the raw milk used to produce them.
Collapse
|
5
|
Paszczyk B, Polak-Śliwińska M, Zielak-Steciwko AE. Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons. Animals (Basel) 2022; 12:198. [PMID: 35049820 PMCID: PMC8773190 DOI: 10.3390/ani12020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to compare and demonstrate whether commercial rennet ripening cheeses available on the market in summer and winter differ in their chemical composition, fatty acid profile, content of cis9trans11 C18:2 (CLA) acid and other trans isomers of C18:1 and C18:2 acid and whether they are characterized by different values of lipid quality assessment indices. The experimental material consisted of rennet ripening of cheeses produced from cow's milk available in the Polish market. The first batch contained cheeses produced in winter and purchased from the market between May and June. The second batch contained cheeses produced in summer and purchased between November and December. Chemical composition was analyzed by FoodScan apparatus. The gas chromatography (GC) method was used to determine the content of fatty acids. Results obtained in the presented study indicate that the chemical composition, content of fatty acids trans isomers, and lipid quality indices varied between summer and winter cheeses. The summer cheeses were richer sources of MUFA and PUFA compared to winter cheeses. Summer cheeses were also characterized by lower content of SFA, higher content n - 3, lower n - 6/n - 3 ratio, and higher content of DFA. Higher contents of CLA and trans C18:1 and C18:2 were found in summer cheeses.
Collapse
Affiliation(s)
- Beata Paszczyk
- Department of Commodity and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Anna E. Zielak-Steciwko
- Department of Cattle Breeding and Milk Production, Wroclaw University of Environmental and Life, 51-630 Wrocław, Poland;
| |
Collapse
|
6
|
Paszczyk B, Czarnowska-Kujawska M. Fatty Acid Profile, Conjugated Linoleic Acid Content, and Lipid Quality Indices in Selected Yogurts Available on the Polish Market. Animals (Basel) 2022; 12:96. [PMID: 35011202 PMCID: PMC8749727 DOI: 10.3390/ani12010096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to determine the fatty acid composition, the content of cis9trans11 C18:2 acid (CLA), and lipid quality indices in yogurts made of cow's milk, available on the Polish market. The test material consisted of: natural yogurts, natural yogurts with additives (muesli, cereal grains), bio yogurts, bio yogurts with additives (millet groats, quinoa, chestnuts), probiotic yogurts, and eco yogurts. All the products were bought in the period from May to June 2021. The conducted research showed that the analyzed yoghurts were characterized by a varying content of fatty acid groups, different values of the calculated lipid quality indices, as well as a different content of conjugated linoleic acid cis9trans11 C18: 2 (CLA). Natural yogurts with additives had the highest content of polyunsaturated fatty acids (PUFAs) and n-3 PUFAs. Natural and bio yogurts with additives had a higher content of n-6 PUF than the other analyzed yogurts. The n-6/n-3 ratio was lower in bio yogurts and eco yogurts. Natural yogurts with additives featured the lowest index of atherogenicity (AI) and index of thrombogenicity (TI) and the highest hypocholesterolemic/hypercholesterolemic ratio (H/H). The fat extracted from the bio yogurts had the highest (0.90% of total fatty acids) mean content of cis9trans11 C18:2 (CLA). In fat of the other analyzed yogurts, mean CLA content in total content of fatty acids varied from 0.48% in natural yogurts with additives to 0.81% in bio yogurts with additives.
Collapse
Affiliation(s)
| | - Marta Czarnowska-Kujawska
- Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| |
Collapse
|
7
|
Changes in the Folate Content and Fatty Acid Profile in Fermented Milk Produced with Different Starter Cultures during Storage. Molecules 2021; 26:molecules26196063. [PMID: 34641607 PMCID: PMC8512886 DOI: 10.3390/molecules26196063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The application of bacterial cultures in food fermentation is a novel strategy to increase the “natural” levels of bioactive compounds. The unique ability of lactic acid bacteria (LAB) to produce folate, B vitamins, and conjugated linolenic acid cis9trans11 C18:2 (CLA) during cold storage up to 21 days was studied. Although some species of LAB can produce folates and other important nutrients, little is known about the production ability of yogurt starter cultures. Pasteurized milk samples were inoculated with four different combinations of commercially available yogurt vaccines, including starter cultures of Bifidobacterium bifidum. Both the type of vaccine and the time of storage at 8 °C had a significant effect on the folate and CLA contents in the tested fermented milks. The highest folate content (105.4 µg/kg) was found in fresh fermented milk inoculated with Lactobacillus delbrueckii, Streptococcus thermophilus, and Bifidobacterium bifidum. Only the mix of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Bifidobacterium bifidum showed potential (59% increase) to synthesize folate during seven days of storage. A significant increase in the content of CLA, when compared to fresh fermented milk, was observed during cold storage for up to 21 days in products enriched with Bifidobacterium bifidum.
Collapse
|
8
|
Paszczyk B, Łuczyńska J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods 2020; 9:foods9111667. [PMID: 33203107 PMCID: PMC7696827 DOI: 10.3390/foods9111667] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the fatty acid composition, including the contents, of conjugated linoleic acid cis9trans11 C18:2 (CLA) and trans C18:1 and C18:2 isomers in hard cow, sheep, and goat cheeses found on the Polish market and to compare lipid quality indices in these cheeses. The gas chromatography method was used to determine the fatty acid profile. The study demonstrated various contents of cis9trans 11 C18:2 (CLA), trans C18:1, and C18:2 isomers and the values of lipid quality indices in the cheeses. Sheep and goat cheeses were richer sources of short-chain fatty acids (SCFA) (14.73 ± 2.55% and 14.80 ± 2.80%, respectively) than the cow cheeses (9.38 ± 0.87%). The cow cheeses had a significantly higher (p < 0.05) content of monounsaturated fatty acids (MUFA), the lowest n-6/n-3 ratio, and the highest content of fatty acids, inducing a desirable dietary effect in humans (DFA) compared to the sheep and goat cheeses. Significantly higher (p < 0.05) contents of polyunsaturated fatty acids (PUFA) were found in sheep cheeses. Goat cheeses had the highest n-3 PUFA content and the lowest values of the thrombogenicity index (TI) (2.67 ± 0.44) compared to the sheep and cow cheeses (3.14 ± 0.29 and 3.13 ± 0.13, respectively). The cow, sheep, and goat cheeses were characterized by similar values of the hypocholesterolemic/hypercholesterolemic (H/H) ratio. Sheep cheeses had the highest levels of cis9trans11 C18:2 (CLA) and the highest total content of trans C18:1 and trans C18:2 isomers. The research showed that sheep, cow, and goat cheeses offered various health benefits. The differences in fatty acid composition and the different values of the lipid quality indices found in the cheeses may be due to differences in both the composition of milk used to produce them and the cheese-making technology. Studies conducted by many authors have indicated that the feeding system of the ruminants has a significant impact on the quality and chemical composition of milk, as well as its applicability for cheese production.
Collapse
|
9
|
Fatty Acids Profile, Trans Isomers, and Lipid Quality Indices in Smoked and Unsmoked Cheeses and Cheese-Like Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010071. [PMID: 31861840 PMCID: PMC6981564 DOI: 10.3390/ijerph17010071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to evaluate the fatty acid composition, including trans C18:1 and C18:2 isomers and the content of conjugated linoleic acid cis9trans11 C18:2 (CLA), in commercial smoked and unsmoked cheeses and cheese-like products available on the Polish market as well as to compare lipid quality indices in these products. The composition of fatty acids was determined with the gas chromatography method. The conducted study demonstrated that smoked and unsmoked cheeses as well as smoked and unsmoked cheese-like products were characterized by various contents of fatty acids and various lipid quality indices. The smoked and the unsmoked cheeses had significantly higher (p < 0.05) contents of saturated fatty acids (SFA), short-chain fatty acids (SCFA), and branched-chain fatty acids (BCFA) than the smoked and the unsmoked cheese-like products. The monounsaturated fatty acids (MUFA) and the polyunsaturated fatty acids (PUFA) contents were the highest in unsmoked cheese-like products (39.29 ± 1.49% and 9.13 ± 0.33%, respectively). In smoked and unsmoked cheeses, MUFA were above 24% and PUFA were above 2.4%. The total content of trans C18:1 isomers was significantly higher (p < 0.05) in the cheeses, but in the group of these isomers, trans10 + trans11 isomers were dominant. High levels of trans6-trans9 isomers (up to 2.92% of total fatty acid) were found in some of the samples of unsmoked cheese-like products, while their content in cheeses was lower. The lipid quality indices in cheeses and cheese-like products were varied. The smoked and the unsmoked cheeses were characterized by significantly higher (p < 0.05) values of the index of thrombogenicity (TI) and atherogenicity (AI) indices and significantly lower (p < 0.05) values of the hypocholesterolemic/hypercholesterolemic (HH) ratio.
Collapse
|