Xie Y, He Z, Lv J, Zhang E, Li H. Identification the Key Odorants in Different Parts of Hyla Rabbit Meat via Solid Phase Microextraction Using Gas Chromatography Mass Spectrometry.
Korean J Food Sci Anim Resour 2016;
36:719-728. [PMID:
28115882 PMCID:
PMC5243955 DOI:
10.5851/kosfa.2016.36.6.719]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to explore the volatile compounds of hind leg, foreleg, abdomen and Longissimus dorsi in both male and female Hyla rabbit meat by solid phase microextraction tandem with gas chromatography mass spectrometry, and to seek out the key odorants via calculating the odor activity value and principal component analysis. Cluster analysis is used to study the flavor pattern differences in four edible parts. Sixty three volatile compounds were detected, including 23 aldehydes, 4 alcohols, 5 ketones, 11 esters, 5 aromatics, 8 acids and 7 hydrocarbons. Among them, 6 aldehydes and 3 acids were identified as the potential key odorants according to the ratio of concentration and threshold. The contents of volatile compounds in male Hyla rabbit meat were significantly higher than those in female one (p<0.05). The results of principal component analysis showed that the first two principal component cumulative variance contributions reach 87.69%; Hexanal, octanal, 2-nonenal, 2-decenal and decanal were regard as the key odorants of Hyla rabbit meat by combining odor activity value and principal component analysis. Therefore volatile compounds of rabbit meat can be effectively characterized. Cluster analysis indicated that volatile chemical compounds of Longissimus dorsi were significantly different from other three parts, which provide reliable information for rabbit processing industry and for possible future sale.
Collapse