1
|
Zhang Q, Zhang Y, Li X, Cao Q, Ma F, Li Y, Xie D, Ma H, Zhang B, Li X, Feng Y, Guo J, Guo M, Liu G. Preparation and characteristics of soy protein isolate - Sea buckthorn flavone emulsion and their effects of on quality and heterocyclic amines of roasted mutton granules. Int J Biol Macromol 2024; 281:136181. [PMID: 39357700 DOI: 10.1016/j.ijbiomac.2024.136181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
A soy protein isolate (SPI) - sea buckthorn flavonoid emulsion was developed to study its effects on roasted lamb quality and heterocyclic amine (HAAs) precursors. The emulsion was stable with uniformly dispersed, well-encapsulated droplets averaging 0.1 to 10 μm. CLSM confirmed its good physical stability, small particle size, and uniform dispersion. FTIR the existence of hydrogen bond, hydrophobic interaction and physical adhesion between SPI and sea-buckthorn flavonoids. The emulsion improved lamb pellet texture by reducing chewiness and hardness, increasing adhesion, and decreasing browning. The emulsion-treated roasted mutton showed a 47.95-53.56 % increase in DPPH scavenging activity and MDA content reduction from 60.78 to 17.80 nmol/mg, indicating strong antioxidant activity and lipid oxidation inhibition. For both precursors and HAAs, there was a significant intensity of inhibition, where creatine decreased by about 44.91-68.34 %, glucose by 84.47 %-97.74 %, and the seven HAAs, Norharman, Harman, IQ, MeIQ, MeIQx, AαC, and PhIP, were inhibited by 79.64 %, respectively, 88.76 %, 65.07 %, 87.27 %, 96.16 %, 89.30 % and 49.44 %, respectively. This study aimed to develop a novel soy protein isolate-sea buckthorn flavonoid emulsion and evaluate its potential to improve roasted lamb quality while inhibiting the formation of harmful HAAs.
Collapse
Affiliation(s)
- Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Electronic and Electrical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
2
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Blackcurrant Pomace Extract as a Natural Antioxidant in Vienna Sausages Reformulated by Replacement of Pork Backfat with Emulsion Gels Based on High Oleic Sunflower and Flaxseed Oils. Gels 2024; 10:534. [PMID: 39195063 PMCID: PMC11487386 DOI: 10.3390/gels10080534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The incorporation of a blackcurrant pomace extract (BPE) at 2.5%, 5.0% and 10.0% into an emulsion gel based on high oleic sunflower and linseed oils was examined in order to obtain a functional ingredient to be used as a pork backfat replacer in Vienna sausages. The replacement of the pork backfat with the control emulsion gel reduced the cooking loss but negatively affected the color by decreasing L* and a* values as compared with the traditional product. A decrease in the n-6/n-3 ratio from 10.99 to around 1.54 (by 7 times) was achieved through reformulation, while the PUFA/SFA ratio increased from 0.49 to 1.09. The incorporation of BPE did not have a major impact on the fatty acid profile and improved color by increasing redness, but negatively affected the texture by increasing hardness, gumminess and share force as compared with the sausages reformulated without extract. BPE reduced the pH and the thermal stability of the emulsion gels, increased cooking loss and decreased moisture retention in sausages. BPE increased the oxidative stability of Vienna sausages enriched in polyunsaturated fatty acids; however, the incorporation of BPE into the emulsion gels above 5% affected the sensory scores for appearance, texture and general acceptability of the reformulated sausages.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
3
|
Gao Y, Zhao Y, Yao Y, Chen S, Xu L, Wu N, Tu Y. Recent trends in design of healthier fat replacers: Type, replacement mechanism, sensory evaluation method and consumer acceptance. Food Chem 2024; 447:138982. [PMID: 38489876 DOI: 10.1016/j.foodchem.2024.138982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
In recent years, with the increasing awareness of consumers about the relationship between excessive fat intake and chronic diseases, such as obesity, heart disease, diabetes, etc., the demand for low-fat foods has increased year by year. However, a simple reduction of fat content in food will cause changes in physical and chemical properties, physiological properties, and sensory properties of food. Therefore, developing high-quality fat replacers to replace natural fats has become an emerging trend, and it is still a technical challenge to completely simulate the special function of natural fat in low-fat foods. This review aims to provide an overview of development trends of fat replacers, and the different types of fat replacers, the potential fat replacement mechanisms, sensory evaluation methods, and their consumer acceptance are discussed and compared, which may provide a theoretical guidance to produce fat replacers and develop more healthy low-fat products favored by consumers.
Collapse
Affiliation(s)
- Yuanxue Gao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
da Silva VT, Mateus N, de Freitas V, Fernandes A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods 2024; 13:2303. [PMID: 39063388 PMCID: PMC11275277 DOI: 10.3390/foods13142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.
Collapse
Affiliation(s)
- Vasco Trincão da Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Kolev N, Vlahova-Vangelova D, Balev D, Dragoev S, Dimov K, Petkov E, Popova T. Effect of the Addition of Soybean Protein and Insect Flours on the Quality of Cooked Sausages. Foods 2024; 13:2194. [PMID: 39063278 PMCID: PMC11276549 DOI: 10.3390/foods13142194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the effect of the addition (2%) of soybean protein (SP) and insect flours derived from house crickets (Acheta domesticus, HCF) and yellow mealworm (Tenebrio molitor, YMF) in cooked sausages. The technological characteristics of the batter, the chemical composition of the sausages, their technological traits and lipid stability during refrigerated storage, as well as their sensory properties, were investigated. The SP, HCF and YMF batters displayed higher pH (p = 0.0025) and stability (p < 0.0001) but a darker colour (p < 0.0001) than the control samples. The addition of SP increased the plasticity of the batter (p = 0.0017), while YMF decreased its structural strength (p = 0.0274). Higher pH and darker colour were detected in SP-, HCF- and YMF-containing sausages; however, the effect of the alternative proteins depended on the duration of storage. The plasticity decreased in the insect-containing sausages (p = 0.0010) and increased over time (p = 0.0136), whereas the elasticity was lower in the YMF group (p < 0.0001). The protein and fat contents were higher (p < 0.0001) in the sausages containing alternative protein. TBARS content decreased over time in these groups. The HCF and YMF sausages received lower scores for their appearance, colour, texture, flavour and taste, suggesting the need for further technological interventions to make such products more attractive to consumers.
Collapse
Affiliation(s)
- Nikolay Kolev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Desislava Vlahova-Vangelova
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Desislav Balev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Stefan Dragoev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Krasimir Dimov
- Agricultural Academy, Institute of Cryobiology and Food Technologies, 53 Cherni vrah Blvd, 1407 Sofia, Bulgaria;
| | - Evgeni Petkov
- Agricultural Academy, Institute of Animal Science-Kostinbrod, Pochivka St, 2232 Kostinbrod, Bulgaria;
| | - Teodora Popova
- Agricultural Academy, Institute of Animal Science-Kostinbrod, Pochivka St, 2232 Kostinbrod, Bulgaria;
| |
Collapse
|
6
|
Fogarasi M, Urs MJ, Socaciu MI, Ranga F, Semeniuc CA, Vodnar DC, Mureșan V, Țibulcă D, Fogarasi S, Socaciu C. Polyphenols-Enrichment of Vienna Sausages Using Microcapsules Containing Acidic Aqueous Extract of Boletus edulis Mushrooms. Foods 2024; 13:979. [PMID: 38611285 PMCID: PMC11011306 DOI: 10.3390/foods13070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Polyphenols are ubiquitous by-products in many plant foods. Their intake has been linked to health benefits like the reduced incidence of cardiovascular disease, diabetes, and cancer. These bioactive compounds can be successfully extracted from Boletus edulis mushrooms with acidic water. However, such extract could influence the sensory or textural properties of the product to be enriched; this inconvenience can be avoided by microencapsulating it using spray drying. In this study, the Vienna sausages were reformulated by replacing 2% of the cured meat with microcapsules containing an acidic aqueous extract of Boletus edulis mushrooms and by replacing ice flakes, an ingredient that represents 22.9% of the manufacturing recipe, with ice cubes from the same extract aiming to obtain a polyphenol enriched product. The results showed a higher content of polyphenols in sausages with extract (VSe; 568.92 μg/g) and microcapsules (VSm; 523.03 μg/g) than in the control ones (455.41 μg/g), with significant differences for 2,4-dihydroxybenzoic acid, protocatechuic acid, and 1-O-galloyl-β-D-glucose. However, because of the oxidative stress caused to the microcapsules by the extract's spray drying, VSm had the highest oxidation state. PV and TBARS levels varied with storage time in all formulations, but given the short period tested, they were well below the allowed/recommended limit. The extract, as such, negatively affected the appearance, odor, and taste of Vienna sausages. The microcapsules, instead, determined an increase in their acceptance rate among consumers; they also prevented moisture loss and color changes during storage. In conclusion, microcapsules are more suitable for use as a polyphenol enrichment ingredient in Vienna sausages than the extract.
Collapse
Affiliation(s)
- Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Maria Jenica Urs
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Maria-Ioana Socaciu
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Floricuța Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.); (C.S.)
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.); (C.S.)
| | - Vlad Mureșan
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Dorin Țibulcă
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Szabolcs Fogarasi
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.); (C.S.)
| |
Collapse
|
7
|
An G, Park S, Ha J. The enhancement effect of mungbean on the physical, functional, and sensory characteristics of soy yoghurt. Sci Rep 2024; 14:3684. [PMID: 38355653 PMCID: PMC10866981 DOI: 10.1038/s41598-024-54106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Vegetable drinks offer a convenient way to increase the daily intake of vegetables containing vitamins, antioxidants, and fiber. In this study, we discovered that mungbean milk serves as a carbohydrate source during fermentation using lactic acid bacteria (LAB) and enhances the nutritional value of vegetable yoghurt. Mungbean milk reduces pH while titratable acidity increases faster than soybean milk during fermentation. M0S, Soybean milk 100% with added sucrose exhibited the highest titratable acidity after 16 h of fermentation. The acetic acid content of all samples did not show significant changes during fermentation, but the lactic acid content increased. Proximate analysis showed no significant change during fermentation, regardless of the fermentation time and mixing ratio of mungbean to soybean milk. The sucrose content of samples except M0S decreased after 16 h of fermentation. Mungbean milk exhibited high antioxidant activity both before and after fermentation, while M0S showed the lowest antioxidant activity. The results of this study demonstrated the potential application of mungbean milk to improve fermented vegetable drinks using LAB functionally. Fermented mungbean milk yoghurt can be a valuable addition to a healthy and balanced diet for those who consume plant-based diets.
Collapse
Affiliation(s)
- Gyeongseon An
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Sunghoon Park
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
- Department of Food & Nutrition, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
| |
Collapse
|
8
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Efficacy of Chitosan, Pectin and Xanthan as Cold Gelling Agents in Emulsion Gels Stabilized with Legume Proteins to Be Used as Pork Backfat Replacers in Beef Burgers. Gels 2023; 9:970. [PMID: 38131956 PMCID: PMC10742780 DOI: 10.3390/gels9120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study aimed to develop stable emulsion gels enriched in polyunsaturated fatty acids, formulated with a mixture of olive (75%) and linseed (25%) oils, by incorporating two different stabilizers-pea and soy protein isolates-and three different cold gelling agents-chitosan, pectin and xanthan-to be used as pork backfat replacers in beef burgers. The color, pH, stability and textural properties of the emulsion gels were analyzed as affected by cold storage (4 °C, 7 days). Proximate composition, fatty acid content, technological and sensory properties were determined after burger processing. Meanwhile, color, pH, textural parameters and lipid oxidation were monitored in burgers at 0, 5 and 10 days of storage at 4 °C. A reduction of the fat content between 21.49% and 39.26% was achieved in the reformulated burgers as compared with the control, while the n-6/n-3 polyunsaturated fatty acid ratio decreased from 5.11 to 0.62. The highest moisture and fat retention were found in reformulated burgers made with xanthan, both with pea and soy proteins; however, their textural properties were negatively affected. The reformulated burgers made with chitosan were rated highest for sensory attributes and overall acceptability, not significantly different from the controls.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
9
|
Lee SY, Lee DY, Mariano EJ, Yun SH, Lee J, Park J, Choi Y, Han D, Kim JS, Joo ST, Hur SJ. Study on the current research trends and future agenda in animal products: an Asian perspective. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1124-1150. [PMID: 38616880 PMCID: PMC11007299 DOI: 10.5187/jast.2023.e121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 04/16/2024]
Abstract
This study aimed to analyze the leading research materials and research trends related to livestock food in Asia in recent years and propose future research agendas to ultimately contribute to the development of related livestock species. On analyzing more than 200 relevant articles, a high frequency of studies on livestock species and products with large breeding scales and vast markets was observed. Asia possesses the largest pig population and most extensive pork market, followed by that of beef, chicken, and milk; moreover, blood and egg markets have also been studied. Regarding research keywords, "meat quality" and "probiotics" were the most common, followed by "antioxidants", which have been extensively studied in the past, and "cultured meat", which has recently gained traction. The future research agenda for meat products is expected to be dominated by alternative livestock products, such as cultured and plant-derived meats; improved meat product functionality and safety; the environmental impacts of livestock farming; and animal welfare research. The future research agenda for dairy products is anticipated to include animal welfare, dairy production, probiotic-based development of high-quality functional dairy products, the development of alternative dairy products, and the advancement of lactose-free or personalized dairy products. However, determining the extent to which the various research articles' findings have been applied in real-world industry proved challenging, and research related to animal food laws and policies and consumer surveys was lacking. In addition, studies on alternatives for sustainable livestock development could not be identified. Therefore, future research may augment industrial application, and multidisciplinary research related to animal food laws and policies as well as eco-friendly livestock production should be strengthened.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Jr Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seon-Tea Joo
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
10
|
Adiamo OQ, Netzel ME, Hoffman LC, Gidley MJ, Osborne S, Sultanbawa Y. Effects of incorporating processed Acacia seed as an emulsifying agent on the quality attributes of beef sausage. Meat Sci 2023; 197:109069. [PMID: 36495835 DOI: 10.1016/j.meatsci.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In this study, partial or full replacement of 6% soy protein isolate (SPI) with 2, 4 and 6% roasted Acacia seed flour (ASRo) and Acacia seed protein concentrates (ASPC) in emulsified beef sausage were investigated. Emulsion stability and cooking loss were lower in samples formulated with ASPC at all levels and control samples compared to ASRo formulated samples. ASRo generated softer and less chewy sausages than ASPC. Cooked 2% ASPC sausages had similar L* and a* values as the control but with lower colour difference (ΔE) values that were similar to cooked 6% SPI sausages' values. An organized protein network structure was observed in the sausages formulated with ASPC at all levels and in the control samples. Therefore, ASPC, particularly at 2 and 4% inclusion, can be used as a functional ingredient to prepare emulsified beef sausages with good quality attributes.
Collapse
Affiliation(s)
- Oladipupo Q Adiamo
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael E Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Louwrens C Hoffman
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael J Gidley
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Simone Osborne
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, St Lucia, QLD, Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia.
| |
Collapse
|
11
|
Jeong HG, Jo K, Lee S, Yong HI, Choi YS, Jung S. Characteristics of pork emulsion gel manufactured with hot-boned pork and winter mushroom powder without phosphate. Meat Sci 2023; 197:109070. [PMID: 36508862 DOI: 10.1016/j.meatsci.2022.109070] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
This study investigated the physicochemical characteristics of pork emulsion gels manufactured from hot-boned (HB) pork and winter mushroom powder in the absence of phosphate. It was found that compared to cold-boned (CB) pork, HB pork had a higher pH and exhibited a higher myofibrillar protein solubility with a lower actomyosin content (P < 0.05). Four types of pork gels were prepared, namely CB pork without phosphate, CB pork with phosphate (CBP), HB pork without phosphate, and HB pork with winter mushroom powder but without phosphate (HBW). The total exuded fluid was comparable for the CBP and HBW gels on all storage days. In addition, the HB and HBW gels had similar springiness and cohesiveness properties to the CBP gel (P > 0.05). These results indicate that the quality of pork gels manufactured in the absence of phosphate can be improved by the use of HB pork and with the incorporation of winter mushroom powder.
Collapse
Affiliation(s)
- Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
12
|
Guo J, Cui L, Meng Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|