1
|
Wang Q, Zhang Q, Wang X, Luo H, Du T, Wu L, Tan M, Chen Y, Wu X, Sun S, Liu Z, Xie Y, Yuan W. TGM2-Mediated Autophagy Contributes to the Radio-Resistance of Non-Small Cell Lung Cancer Stem-like Cells. Biomedicines 2024; 12:2231. [PMID: 39457544 PMCID: PMC11504678 DOI: 10.3390/biomedicines12102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: Cancer cells with 'stemness' are generally resistant to chemoradiotherapy. This study aims to compare the differences in radiation sensitivity of A549 and CD44+A549 stem-like cells to X-rays and carbon ion radiation (C-ions), and to find a target that can kill cancer stem-like cells (CSCs) of non-small cell lung cancer (NSCLC). Methods: The study used two cell lines (A549 and CD44+A549). The tumorigenicity of cells was tested with animal experiments. The cells were irradiated with X-rays and C-ions. Cell viability was detected using the CCK-8 and EdU assay. A liquid chromatograph-mass spectrometer (LC-MS) helped detect metabolic differences. Protein and mRNA expression were detected using a Western blot, reverse transcription-quantitative (RT-qPCR), and PCR array. The autophagic activity was monitored with a CYTO-ID® Autophagy Detection Kit 2.0. Immunofluorescence and co-immunoprecipitation helped to observe the localization and interaction relationships. Results: First, we verified the radio-resistance of CD44+A549 stem-like cells. LC-MS indicated the difference in autophagy between the two cells, followed by establishing a correlation between the radio-resistance and autophagy. Subsequently, the PCR array proved that TGM2 is significantly upregulated in CD44+A549 stem-like cells. Moreover, the TGM2 knockdown by small interfering RNA could decrease the radio-resistance of CD44+A549 cells. Bioinformatic analyses and experiments showed that TGM2 is correlated with the expression of CD44 and LC3B. Additionally, TGM2 could directly interact with LC3B. Conclusions: We established the CD44-TGM2-LC3 axis: CD44 mediates radio-resistance of CD44+A549 stem-like cells through TGM2 regulation of autophagy. Our study may provide new biomarkers and strategies to alleviate the radio-resistance of CSCs in NSCLC.
Collapse
Affiliation(s)
- Qian Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Tianqi Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Luyao Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Mingyu Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Xun Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Wenzhen Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
| |
Collapse
|
2
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
3
|
Pronoy TUH, Islam F, Gopalan V, Lam AKY. Surface Markers for the Identification of Cancer Stem Cells. Methods Mol Biol 2024; 2777:51-69. [PMID: 38478335 DOI: 10.1007/978-1-0716-3730-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cancer stem cells have genetic and functional characteristics which can turn them resistant to standard cancer therapeutic targets. Identification of these cells is challenging and is done mainly by detecting the expression of antigens specific to stem cells. Currently, there is a significant number of surface markers available which can detect cancer stem cells by directly targeting the specific antigens present in cells. These markers possess differential expression patterns and sub-localizations in cancer stem cells compared to nonneoplastic and somatic cells. In addition to these biomarkers, multiple analytical methods and techniques, including functional assays, cell sorting, filtration approaches, and xenotransplantation methods, are used to identify cancer stem cells. This chapter will overview the functional significance of cancer stem cells, their biological correlations, specific markers, and detection methods.
Collapse
Affiliation(s)
- Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
4
|
Mallet JF, Shahbazi R, Alsadi N, Saleem A, Sobiesiak A, Arnason JT, Matar C. Role of a Mixture of Polyphenol Compounds Released after Blueberry Fermentation in Chemoprevention of Mammary Carcinoma: In Vivo Involvement of miR-145. Int J Mol Sci 2023; 24:ijms24043677. [PMID: 36835085 PMCID: PMC9966222 DOI: 10.3390/ijms24043677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Epigenetic mechanisms such as microRNA (miRNA) deregulation seem to exert a central role in breast cancer initiation and progression. Therefore, targeting epigenetics deregulation may be an effective strategy for preventing and halting carcinogenesis. Studies have revealed the significant role of naturally occurring polyphenolic compounds derived from fermented blueberry fruits in cancer chemoprevention by modulation of cancer stem cell development through the epigenetic mechanism and regulation of cellular signaling pathways. In this study, we first investigated the phytochemical changes during the blueberry fermentation process. Fermentation favored the release of oligomers and bioactive compounds such as protocatechuic acid (PCA), gallic acid, and catechol. Next, we investigated the chemopreventive potentials of a polyphenolic mixture containing PCA, gallic acid, and catechin found in fermented blueberry juice in a breast cancer model by measuring miRNA expression and the signaling pathways involved in breast cancer stemness and invasion. To this end, 4T1 and MDA-MB-231 cell lines were treated with different doses of the polyphenolic mixture for 24 h. Additionally, female Balb/c mice were fed with this mixture for five weeks; two weeks before and three weeks after receiving 4T1 cells. Mammosphere formation was assayed in both cell lines and the single-cell suspension obtained from the tumor. Lung metastases were counted by isolating 6-thioguanine-resistant cells present in the lungs. In addition, we conducted RT-qPCR and Western blot analysis to validate the expression of targeted miRNAs and proteins, respectively. We found a significant reduction in mammosphere formation in both cell lines treated with the mixture and in tumoral primary cells isolated from mice treated with the polyphenolic compound. The number of colony-forming units of 4T1 cells in the lungs was significantly lower in the treatment group compared to the control group. miR-145 expression significantly increased in the tumor samples of mice treated with the polyphenolic mixture compared to the control group. Furthermore, a significant increase in FOXO1 levels was noted in both cell lines treated with the mixture. Overall, our results show that phenolic compounds found in fermented blueberry delay the formation of tumor-initiating cells in vitro and in vivo and reduce the spread of metastatic cells. The protective mechanisms seem to be related, at least partly, to the epigenetic modulation of mir-145 and its signaling pathways.
Collapse
Affiliation(s)
- Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Roghayeh Shahbazi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Ammar Saleem
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Agnes Sobiesiak
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - John Thor Arnason
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +613-562-5800 (ext. 8322)
| |
Collapse
|
5
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Wang Q, Liu R, Zhang Q, Luo H, Wu X, Du T, Chen Y, Tan M, Liu Z, Sun S, Yang K, Tian J, Wang X. Biological effects of cancer stem cells irradiated by charged particle: a systematic review of in vitro studies. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04561-6. [PMID: 36611110 DOI: 10.1007/s00432-022-04561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE The existence of cancer stem cells (CSCs) is closely related to tumor recurrence, metastasis, and resistance to chemoradiotherapy. In addition, given the unique physical and biological advantages of charged particle, we hypothesized that charged particle irradiation would produce strong killing effects on CSCs. The purpose of our systematic review is to evaluate the biological effects of CSCs irradiated by charged particle, including proliferation, invasion, migration, and changes in the molecular level. METHODS We searched PubMed, EMBASE, and Web of Science until 17 march 2022 according to the key words. Included studies have to be vitro studies of CSCs irradiated by charged particle. Outcomes included one or more of radiation sensitivity, proliferation, metastasis, invasion, and molecular level changes, like DNA damage after been irradiated. RESULTS Eighteen studies were included in the final analysis. The 18 articles include 12-carbon ion irradiation, 4-proton irradiation, 1 α-particle irradiation, 1-carbon ion combine proton irradiation. CONCLUSION Through the extraction and analysis of data, we came to this conclusion: CSCs have obvious radio-resistance compared with non-CSCs, and charged particle irradiation or in combination with drugs could overcome this resistance, specifically manifested in inhibiting CSCs' proliferation, invasion, migration, and causing more and harder to repair DNA double-stranded breaks (DSB) of CSCs.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China. .,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, 730030, China. .,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Nör F, Nör C, Bento LW, Zhang Z, Bretz WA, Nör JE. Propolis reduces the stemness of head and neck squamous cell carcinoma. Arch Oral Biol 2021; 125:105087. [PMID: 33639480 DOI: 10.1016/j.archoralbio.2021.105087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the effect of Brazilian propolis on head and neck cancer stem cells in vitro. METHODS Head and neck squamous cell carcinoma (HNSCC) cell lines (UM-SCC-17B and UM-SCC-74A), human keratinocytes (HK), and primary human dermal microvascular endothelial cells (HDMEC) were treated with 0.5, 5.0, or 50 μg/mL green, brown or red Brazilian propolis or vehicle control for 24, 36, and 72 h. Cell viability was evaluated by Sulforhodamine B assay. Western blots evaluated expression of cancer stem cell (CSC) markers (i.e. ALDH, CD44, Oct-4, Bmi-1) and flow cytometry was performed to determine the impact of propolis in the fraction of CSC, defined as ALDHhighCD44high cells. RESULTS propolis significantly reduced cell viability of HNSCC and HDMEC cells, but not HK. Notably, red propolis caused a significant reduction in the percentage of CSC, reduced the number of orospheres, and downregulated the expression of stem cell markers. CONCLUSIONS Collectively, our data demonstrate an anti-CSC effect of propolis, and suggest that propolis (i.e. red propolis) might be beneficial for patients with head and neck cancer.
Collapse
Affiliation(s)
- Felipe Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Oral Pathology, Radiology & Medicine, University of Iowa College of Dentistry, Iowa City, IA, USA.
| | - Carolina Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Letícia W Bento
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Phi LTH, Wijaya YT, Sari IN, Kim KS, Yang YG, Lee MW, Kwon HY. 20(R)-Ginsenoside Rg3 Influences Cancer Stem Cell Properties and the Epithelial-Mesenchymal Transition in Colorectal Cancer via the SNAIL Signaling Axis. Onco Targets Ther 2019; 12:10885-10895. [PMID: 31849492 PMCID: PMC6912006 DOI: 10.2147/ott.s219063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Cancer stem cells (CSCs) have been proposed as central drivers of cancer relapse in many cancers. In the present study, we investigated the inhibitory effect of 20(R)-Ginsenoside Rg3 (Rg3R), a major active component of ginseng saponin, on CSC-like cells and the Epithelial-Mesenchymal Transition (EMT) in colorectal cancer (CRC). Methods The effects of ginsenoside Rg3R on the colony-forming, migration, invasion, and wound-healing abilities of CRC cells were determined in HT29 and SW620 cell lines in vitro. Further, ginsenoside Rg3R was given intraperitoneally at 5mg/kg of mouse body weight to check its effect on the metastasis of CRC cells in vivo. Results Ginsenoside Rg3R significantly inhibited CSC properties, but did not affect cell proliferation. Moreover, ginsenoside Rg3R treatment significantly inhibited the motility of CRC cells based on migration, invasion, and wound-healing assays. The inhibitory effects of ginsenoside Rg3R on CRC are potentially mediated by significant down-regulation of the expression of stemness genes and EMT markers in CRC cells in a SNAIL-dependent manner. Furthermore, ginsenoside Rg3R treatment decreased both the number and size of tumor nodules in the liver, lung, and kidney tissues in a metastasis mouse model. Conclusion These findings highlighted the potential use of ginsenoside Rg3R in clinical applications for colorectal cancer treatment.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yoseph Toni Wijaya
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
10
|
Sudhalkar N, Rathod NP, Mathews A, Chopra S, Sriram H, Shrivastava SK, Goda JS. Potential role of cancer stem cells as biomarkers and therapeutic targets in cervical cancer. Cancer Rep (Hoboken) 2019; 2:e1144. [PMID: 32721115 PMCID: PMC7941515 DOI: 10.1002/cnr2.1144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Eradicating cancer stem cells (CSCs) that are termed as the "beating heart" of various malignant tumors, including cervical cancer, holds great importance in cancer therapeutics. CSCs not only confer chemo-radio resistance but also play an important role in tumor metastasis and thereby pose a potential barrier for the cure of cervical cancer. Cervical cancer, a common malignancy among females, is associated with high morbidity and mortality rates, and the study on CSCs residing in the niche is promising. RECENT FINDINGS Biomarker approach to screen the cervical CSCs has gained impetus since the past decade. Progress in identification and characterization of the stem cell biomarkers has led to many insights. For the diagnostic purpose, several biomarkers like viral (HPV16), stem cell markers, transcription factors (viz, SOX2, OCT 4, and c-Myc), and CSC surface markers (viz, ALDH1 and CD44) have been identified. The research so far has been directed to study the CSC stemness and demonstrates various gene expression signatures in cervical CSCs. Such studies hold a potential to improve diagnostic accuracy and predict therapeutic response and clinical outcome in patients. CONCLUSIONS Stem cell biomarkers have been validated and their therapeutic targets are being developed as "strategies to improve therapeutic ratio in personalized medicine." This review gives a brief overview of the cervical CSC biomarkers, their current and future diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Niyati Sudhalkar
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| | - Nidul P. Rathod
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| | - Ashwathi Mathews
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| | - Supriya Chopra
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| | - Harshini Sriram
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| | - Shyam K. Shrivastava
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| | - Jayant S. Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial CentreHomi Bhaba National InstituteKharghar, Navi MumbaiIndia
| |
Collapse
|
11
|
Reid P, Marcu LG, Olver I, Moghaddasi L, Staudacher AH, Bezak E. Diversity of cancer stem cells in head and neck carcinomas: The role of HPV in cancer stem cell heterogeneity, plasticity and treatment response. Radiother Oncol 2019; 135:1-12. [PMID: 31015153 DOI: 10.1016/j.radonc.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) resulting from oncogenic transformations following human papillomavirus (HPV) infection consistently demonstrate better treatment outcomes than HNSCC from other aetiologies. Squamous cell carcinoma of the oropharynx (OPSCC) shows the highest prevalence of HPV involvement at around 70-80%. While strongly prognostic, HPV status alone is not sufficient to predict therapy response or any potential dose de-escalation. Cancer stem cell (CSC) populations within these tumour types represent the most therapy-resistant cells and are the source of recurrence and metastases, setting a benchmark for tumour control. This review examines clinical and preclinical evidence of differences in response to treatment by the HPV statuses of HNSCC and the role played by CSCs in treatment resistance and their repopulation from non-CSCs. Evidence was collated from literature searches of PubMed, Scopus and Ovid for differential treatment response by HPV status and contribution by critical biomarkers including CSC fractions and chemo-radiosensitivity. While HPV and CSC are yet to fulfil promise as biomarkers of treatment response, understanding how HPV positive and negative aetiologies affect CSC response to treatment and tumour plasticity will facilitate their use for greater treatment individualisation.
Collapse
Affiliation(s)
- Paul Reid
- School of Health Sciences, University of South Australia, Adelaide, Australia; Cancer Research Institute, University of South Australia, Adelaide, Australia.
| | - Loredana G Marcu
- School of Health Sciences, University of South Australia, Adelaide, Australia; Faculty of Science, University of Oradea, Romania
| | - Ian Olver
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Leyla Moghaddasi
- Department of Physics, University of Adelaide, Australia; Genesis Care, Department of Medical Physics, Adelaide, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; School of Medicine, University of Adelaide, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, Australia; Cancer Research Institute, University of South Australia, Adelaide, Australia; Department of Physics, University of Adelaide, Australia
| |
Collapse
|
12
|
The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. Med Sci (Basel) 2019; 7:medsci7020019. [PMID: 30691081 PMCID: PMC6409630 DOI: 10.3390/medsci7020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (transglutaminase type 2; TG2) is the most ubiquitously expressed member of the transglutaminase family (EC 2.3.2.13) that catalyzes specific post-translational modifications of proteins through a calcium-dependent acyl-transfer reaction (transamidation). In addition, this enzyme displays multiple additional enzymatic activities, such as guanine nucleotide binding and hydrolysis, protein kinase, disulfide isomerase activities, and is involved in cell adhesion. Transglutaminase 2 has been reported as one of key enzymes that is involved in all stages of carcinogenesis; the molecular mechanisms of action and physiopathological effects depend on its expression or activities, cellular localization, and specific cancer model. Since it has been reported as both a potential tumor suppressor and a tumor-promoting factor, the role of this enzyme in cancer is still controversial. Indeed, TG2 overexpression has been frequently associated with cancer stem cells’ survival, inflammation, metastatic spread, and drug resistance. On the other hand, the use of inducers of TG2 transamidating activity seems to inhibit tumor cell plasticity and invasion. This review covers the extensive and rapidly growing field of the role of TG2 in cancer stem cells survival and epithelial–mesenchymal transition, apoptosis and differentiation, and formation of aggressive metastatic phenotypes.
Collapse
|
13
|
Kuşoğlu A, Biray Avcı Ç. Cancer stem cells: A brief review of the current status. Gene 2018; 681:80-85. [PMID: 30268439 DOI: 10.1016/j.gene.2018.09.052] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) comprise the subpopulation of tumor bulk and acquire resistant to conventional therapies and are considered as the primary tumor initiator cells. Nowadays, the tumor heterogeneity originated from CSCs, and its progenitors are accepted as a mortifying drawback in front of the cancer therapies. However, escalating knowledge gained from studies investigating the biology of CSCs will open up new frames for targeted therapies and decrease the chance of recurrence of the disease. In this review, the general understanding of CSCs and current studies were discussed briefly. Considering the latest data collected from studies of CSCs, defining the tumor heterogeneity and tumor microenvironment comprehensively will be very important to step up the cancer research.
Collapse
Affiliation(s)
- Alican Kuşoğlu
- Ege University Medical School, Department of Medical Biology, Turkey.
| | - Çığır Biray Avcı
- Ege University Medical School, Department of Medical Biology, Turkey
| |
Collapse
|
14
|
Mima S, Kakinuma C, Higuchi T, Saeki K, Yamada T, Uematsu R, Ishino M, Kito N, Nishikawa H, Kuniyoshi H, Matsumoto T, Fujiwara H, Paradiso LJ, Shimada Y, Iwamura H. FF-10502, an Antimetabolite with Novel Activity on Dormant Cells, Is Superior to Gemcitabine for Targeting Pancreatic Cancer Cells. J Pharmacol Exp Ther 2018; 366:125-135. [PMID: 29653962 DOI: 10.1124/jpet.118.248740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
In this paper, we report that 1-(2-deoxy-2-fluoro-4-thio-β-d-arabinofuranosyl) cytosine (FF-10502), a pyrimidine nucleoside antimetabolite with a chemical structure similar to gemcitabine, shows beneficial anticancer activity via a novel mechanism of action on dormant cells. The growth inhibition of pancreatic cancer cell lines by FF-10502 (IC50, 60-330 nM) was moderately weaker than that by gemcitabine in vitro. In contrast, an in vivo orthotopic implantation model in mice with established human pancreatic cancer cell line, SUIT-2, revealed no mortality with FF-10502 intravenous treatment, which was related to regression of implanted tumor and little metastasis, whereas 75% of the mice treated with gemcitabine died by day 128. Two in vivo patient-derived xenograft models with gemcitabine-resistant pancreatic cancer cells also demonstrated complete tumor growth suppression with FF-10502, but only partial inhibition with gemcitabine. We also investigated the mechanism of action of FF-10502 by using dormant cancer cells, which are reportedly involved in the development of resistance to chemotherapy. In vitro serum starvation-induced dormant SUIT-2 cells developed resistance to gemcitabine even in combination with DNA damage inducers (DDIs; H2O2, cisplatin, and temozolomide). Interestingly, FF-10502 in combination with DDIs significantly induced concentration-dependent cell death in accordance with enhanced DNA damage. FF-10502 was far more potent than gemcitabine in inhibiting DNA polymerase β, which may explain the difference in dormant cell injury, although further investigations for direct evidences are necessary. In conclusion, our study demonstrated the beneficial antitumor effects of FF-10502 in clinically relevant in vivo models, and suggests the importance of preventing DNA repair unlike gemcitabine.
Collapse
Affiliation(s)
- Shinji Mima
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Chihaya Kakinuma
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Tamami Higuchi
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Kazunori Saeki
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Takayuki Yamada
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Rena Uematsu
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Miki Ishino
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Nobuko Kito
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hiroki Nishikawa
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hidenobu Kuniyoshi
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Takuya Matsumoto
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hideyasu Fujiwara
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Linda J Paradiso
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Yasuhiro Shimada
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hiroyuki Iwamura
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| |
Collapse
|
15
|
Abstract
Cancer stem cells have genetic and functional characteristics that can turn them resistant to standard cancer therapeutic targets. Identification of these cells is challenging and is mostly done by detecting the expression of their antigens in a group of stem cells. Currently, there are a significant number of surface markers available which can detect the cancer stem cells by directly targeting their specific antigens present in cells. These markers possess differential expression patterns and sub-localizations in cancer stem cells when compared to non-neoplastic stem cells and somatic cells. In addition to molecular markers, multiple analytical methods and techniques including functional assays, cell sorting, filtration approaches, and xenotransplantation methods are used to identify cancer stem cells. This chapter will overview the functional significance of cancer stem cells, its biological correlations, specific markers, and detection methods.
Collapse
Affiliation(s)
- Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
16
|
McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:350-365. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesotheliomas (MPM) are notoriously refractory to conventional treatment modalities. Recent insights regarding epigenetic alterations in MPM provide the preclinical rationale for the evaluation of novel combinatorial regimens targeting the epigenome in these neoplasms.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
17
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
18
|
Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, Kong D, Liu X. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncol Lett 2016; 12:1355-1360. [PMID: 27446437 PMCID: PMC4950051 DOI: 10.3892/ol.2016.4757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/26/2016] [Indexed: 01/02/2023] Open
Abstract
The majority of cancer stem cells exist in the G0, or quiescent phase of the cell cycle. However, the cells can escape quiescence following routine radiotherapy and chemotherapy, resulting in tumor recurrence. Presently, achieving the accurate regulation of cancer stem cell growth in order to study a specific state, including the quiescent (mostly G0 or G1 phase), proliferative (mostly S phase) or differential (mostly G2/M phase) states, can be challenging. This makes the determination of cell cycle state-specific characteristics and analysis of potential intervention treatments difficult, particularly for quiescent cells. Breast cancer stem cells were cultured on a soft or hard agar matrix surface in the presence or absence of stem cell growth factors. Cells could be successfully limited in either the quiescent, proliferative or differentiated states. These findings provide a foundation for further study of the cell cycle in breast cancer stem cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Xiangming Liu
- Department of Esophageal Neoplasms, Cancer Hospital of Tianjin Medical University, Tianjin 300060, P.R. China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Lili Li
- Department of Orthopedics, Cancer Hospital of Tianjin Medical University, Tianjin 300060, P.R. China
| | - Zhigang Cui
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Yuan Gao
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Di Kong
- Department of Tumor Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
19
|
Vuong T, Mallet JF, Ouzounova M, Rahbar S, Hernandez-Vargas H, Herceg Z, Matar C. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation. J Transl Med 2016; 14:13. [PMID: 26762586 PMCID: PMC4712588 DOI: 10.1186/s12967-016-0770-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Naturally occurring polyphenolic compounds from fruits, particularly from blueberries, have been reported to be significantly involved in cancer chemoprevention and chemotherapy. Biotransformation of blueberry juice by Serratia vaccinii increases its polyphenolic content and endows it with anti-inflammatory properties. METHODS This study evaluated the effect of a polyphenol-enriched blueberry preparation (PEBP) and its non-fermented counterpart (NBJ), on mammary cancer stem cell (CSC) development in in vitro, in vivo and ex vivo settings. Effects of PEBP on cell proliferation, mobility, invasion, and mammosphere formation were measured in vitro in three cell lines: murine 4T1 and human MCF7 and MDA-MB-231. Ex vivo mammosphere formation, tumor growth and metastasis observations were carried out in a BALB/c mouse model. RESULTS Our research revealed that PEBP influence cellular signaling cascades of breast CSCs, regulating the activity of transcription factors and, consequently, inhibiting tumor growth in vivo by decreasing metastasis and controlling PI3K/AKT, MAPK/ERK, and STAT3 pathways, central nodes in CSC inflammatory signaling. PEBP significantly inhibited cell proliferation of 4T1, MCF-7 and MDA-MB-231. In all cell lines, PEBP reduced mammosphere formation, cell mobility and cell migration. In vivo, PEBP significantly reduced tumor development, inhibited the formation of ex vivo mammospheres, and significantly reduced lung metastasis. CONCLUSIONS This study showed that polyphenol enrichment of a blueberry preparation by fermentation increases its chemopreventive potential by protecting mice against tumor development, inhibiting the formation of cancer stem cells and reducing lung metastasis. Thus, PEBP may represent a novel complementary alternative medicine therapy and a source for novel therapeutic agents against breast cancer.
Collapse
Affiliation(s)
- Tri Vuong
- Nutritional Sciences Program, Faculty of Health Sciences, University of Ottawa, R2057 Roger Guindon Hall, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jean-François Mallet
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| | - Maria Ouzounova
- Cancer Center, Georgia Regents University, Augusta, GA, USA.
| | - Sam Rahbar
- Nutritional Sciences Program, Faculty of Health Sciences, University of Ottawa, R2057 Roger Guindon Hall, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France.
| | - Chantal Matar
- Nutritional Sciences Program, Faculty of Health Sciences, University of Ottawa, R2057 Roger Guindon Hall, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
20
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
21
|
Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res 2015; 335:135-47. [PMID: 25967525 DOI: 10.1016/j.yexcr.2015.04.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer.
Collapse
|
22
|
Zechner D, Radecke T, Amme J, Bürtin F, Albert AC, Partecke LI, Vollmar B. Impact of diabetes type II and chronic inflammation on pancreatic cancer. BMC Cancer 2015; 15:51. [PMID: 25885700 PMCID: PMC4336675 DOI: 10.1186/s12885-015-1047-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/28/2015] [Indexed: 12/24/2022] Open
Abstract
Background We explored if known risk factors for pancreatic cancer such as type II diabetes and chronic inflammation, influence the pathophysiology of an established primary tumor in the pancreas and if administration of metformin has an impact on tumor growth. Methods Pancreatic carcinomas were assessed in a syngeneic orthotopic pancreas adenocarcinoma model after injection of 6606PDA cells in the pancreas head of either B6.V-Lepob/ob mice exhibiting a type II diabetes-like syndrome or normoglycemic mice. Chronic pancreatitis was then induced by repetitive administration of cerulein. Cell proliferation, cell death, inflammation and the expression of cancer stem cell markers within the carcinomas was evaluated by immunohistochemistry. In addition, the impact of the antidiabetic drug, metformin, on the pathophysiology of the tumor was assessed. Results Diabetic mice developed pancreatic ductal adenocarcinomas with significantly increased tumor weight when compared to normoglycemic littermates. Diabetes caused increased proliferation of cancer cells, but did not inhibit cancer cell necrosis or apoptosis. Diabetes also reduced the number of Aldh1 expressing cancer cells and moderately decreased the number of tumor infiltrating chloracetate esterase positive granulocytes. The administration of metformin reduced tumor weight as well as cancer cell proliferation. Chronic pancreatitis significantly diminished the pancreas weight and increased lipase activity in the blood, but only moderately increased tumor weight. Conclusion We conclude that diabetes type II has a fundamental influence on pancreatic ductal adenocarcinoma by stimulating cancer cell proliferation, while metformin inhibits cancer cell proliferation. Chronic inflammation had only a minor effect on the pathophysiology of an established adenocarcinoma.
Collapse
Affiliation(s)
- Dietmar Zechner
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Tobias Radecke
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Jonas Amme
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Florian Bürtin
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Ann-Christin Albert
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Lars Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Ernst-Moritz-Arndt-University, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| |
Collapse
|
23
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Kaebisch C, Schipper D, Babczyk P, Tobiasch E. The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J 2014; 13:75-84. [PMID: 26900431 PMCID: PMC4720018 DOI: 10.1016/j.csbj.2014.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.
Collapse
Affiliation(s)
| | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359 Rheinbach, Germany
| |
Collapse
|
25
|
Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q, Weaver DT, Menges C, Padval M, McClatchey AI, Xu Q, Testa JR, Pachter JA. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med 2014; 6:237ra68. [PMID: 24848258 DOI: 10.1126/scitranslmed.3008639] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The goal of targeted therapy is to match a selective drug with a genetic lesion that predicts for drug sensitivity. In a diverse panel of cancer cell lines, we found that the cells most sensitive to focal adhesion kinase (FAK) inhibition lack expression of the neurofibromatosis type 2 (NF2) tumor suppressor gene product, Merlin. Merlin expression is often lost in malignant pleural mesothelioma (MPM), an asbestos-induced aggressive cancer with limited treatment options. Our data demonstrate that low Merlin expression predicts for increased sensitivity of MPM cells to a FAK inhibitor, VS-4718, in vitro and in tumor xenograft models. Disruption of MPM cell-cell or cell-extracellular matrix (ECM) contacts with blocking antibodies suggests that weak cell-cell adhesions in Merlin-negative MPM cells underlie their greater dependence on cell-ECM-induced FAK signaling. This provides one explanation of why Merlin-negative cells are vulnerable to FAK inhibitor treatment. Furthermore, we validated aldehyde dehydrogenase as a marker of cancer stem cells (CSCs) in MPM, a cell population thought to mediate tumor relapse after chemotherapy. Whereas pemetrexed and cisplatin, standard-of-care agents for MPM, enrich for CSCs, FAK inhibitor treatment preferentially eliminates these cells. These preclinical results provide the rationale for a clinical trial in MPM patients using a FAK inhibitor as a single agent after first-line chemotherapy. With this design, the FAK inhibitor could potentially induce a more durable clinical response through reduction of CSCs along with a strong antitumor effect. Furthermore, our data suggest that patients with Merlin-negative tumors may especially benefit from FAK inhibitor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Craig Menges
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Andrea I McClatchey
- Massachusetts General Hospital Center for Cancer Research and Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Qunli Xu
- Verastem Inc., Cambridge, MA 02142, USA
| | | | | |
Collapse
|
26
|
Liu W, Gao Q, Chen K, Xue X, Li M, Chen Q, Zhu G, Gao Y. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol Rep 2014; 32:1853-60. [PMID: 25119492 DOI: 10.3892/or.2014.3401] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/08/2014] [Indexed: 11/06/2022] Open
Abstract
Hiwi, also named PiwiL1, is a human homologue of the Piwi family which is associated with stem cells and is overexpressed in several types of cancers. In the present study, we aimed to investigate the role of Hiwi in cervical carcinogenesis. Immunochemical analysis showed a significantly higher frequency of Hiwi staining in high-grade squamous intraepithelial lesions (HSILs) and cervical cancer tissues when comparing with the frequency in normal cervices. Particularly, Hiwi staining was restricted to basal cells of the normal cervix and was associated with the progression of cervical cancer and chemotherapy resistance. We further found that ectopic Hiwi increased the chemical resistance in SiHa cells, and silencing of Hiwi in HeLa cells decreased the cell viability. In addition, as a cancer stem cell marker, Hiwi promoted the tumorsphere formation in vitro and tumorigenicity in vivo and elevated the expression of several stem cell self-renewal-associated transcription factors, in spite of inhibited the proliferation. These results suggest that Hiwi may participate in the carcinogenesis of cervical cancer and may be a potential therapeutic target molecule for cervical cancers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Qing Gao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Kunlun Chen
- Department of General Surgery, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xiang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Mu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Qian Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Gaixia Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
27
|
Volonté A, Di Tomaso T, Spinelli M, Todaro M, Sanvito F, Albarello L, Bissolati M, Ghirardelli L, Orsenigo E, Ferrone S, Doglioni C, Stassi G, Dellabona P, Staudacher C, Parmiani G, Maccalli C. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. THE JOURNAL OF IMMUNOLOGY 2013; 192:523-32. [PMID: 24277698 DOI: 10.4049/jimmunol.1301342] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer-initiating cells (CICs) that are responsible for tumor initiation, propagation, and resistance to standard therapies have been isolated from human solid tumors, including colorectal cancer (CRC). The aim of this study was to obtain an immunological profile of CRC-derived CICs and to identify CIC-associated target molecules for T cell immunotherapy. We have isolated cells with CIC properties along with their putative non-CIC autologous counterparts from human primary CRC tissues. These CICs have been shown to display "tumor-initiating/stemness" properties, including the expression of CIC-associated markers (e.g., CD44, CD24, ALDH-1, EpCAM, Lgr5), multipotency, and tumorigenicity following injection in immunodeficient mice. The immune profile of these cells was assessed by phenotype analysis and by in vitro stimulation of PBMCs with CICs as a source of Ags. CICs, compared with non-CIC counterparts, showed weak immunogenicity. This feature correlated with the expression of high levels of immunomodulatory molecules, such as IL-4, and with CIC-mediated inhibitory activity for anti-tumor T cell responses. CIC-associated IL-4 was found to be responsible for this negative function, which requires cell-to-cell contact with T lymphocytes and which is impaired by blocking IL-4 signaling. In addition, the CRC-associated Ag COA-1 was found to be expressed by CICs and to represent, in an autologous setting, a target molecule for anti-tumor T cells. Our study provides relevant information that may contribute to designing new immunotherapy protocols to target CICs in CRC patients.
Collapse
Affiliation(s)
- Andrea Volonté
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Centre, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Faber A, Aderhold C, Goessler UR, Hoermann K, Schultz JD, Umbreit C, Walliczek U, Stern-Straeter J. Interaction of a CD44+ head and neck squamous cell carcinoma cell line with a stromal cell-derived factor-1-expressing supportive niche: An in vitro model. Oncol Lett 2013; 7:82-86. [PMID: 24348826 PMCID: PMC3861560 DOI: 10.3892/ol.2013.1673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/19/2013] [Indexed: 01/15/2023] Open
Abstract
The cancer stem cell (CSC) theory implies that CSCs are surrounded by supportive stromal cells, which are known as the CSC niche. Stromal cell-derived factor-1 (SDF-1) shows a multitude of functional effects in head and neck squamous cell carcinoma (HNSCC) cells, including migration and polarization. Therefore, the SDF-1-CXCR4 axis may be involved in the pathophysiology of the progression, recurrence and metastasis of malignant diseases of the head and neck. In the present study, the CD44+ HNSCC UM-SCC-11A cell line was used as a model for CSCs. The interaction between the UM-SCC-11A cells and the supportive microenvironmental cells, including fibrocytes, human umbilical vein endothelial cells (HUVECs) and human microvascular vein endothelial cells (HMVECs) was evaluated. All the cell types that were tested were shown to secrete different concentrations of SDF-1 into the surrounding culture medium [mean (m)fibro, 1243.3±156.2 pg/ml; mHMVEC, 1061.4±23.2 pg/ml; mHUVEC, 849.6±110.9 pg/ml]. The migration of the UM-SCC-11A cells towards the supportive cells was increased by a higher supply of SDF-1 (contrfibro, 315.23±61.55 μm; mfibro, 477.73±143.7 μm; Pfibro=0.003; contrHMVEC, 123.41±66.68 μm; mHMVEC, 249.04±111.95 μm; PHMVEC=0.004; contrHUVEC, 189.7±93.26 μm; mHUVEC, 260.82±161.58 μm). The amount of the UM-SCC-11A cells that migrated towards the differentiated fibrocytes was significantly higher than that which migrated towards the HMVECs or HUVECs (Pfibro/HMVEC=2.12E-11; Pfibro/HUVEC=2.28E-5). Cell-cell interaction by podia formation of the UM-SCC-11A cells was observed in all the supportive cell types that were tested. Broadly based cell-cell contacts were observed. By contrast, digitiform podia formations presented by the UM-SCC-11A cells were determined using fluorescence microscopy. The SDF-1-CXCR4 axis is postulated to be a crucial pathway in the interaction between CSCs and their surrounding supportive cells. Understanding the cell-cell interactions in the CSC niche using in vitro models may aid in gaining further insight into these mechanisms and finding new strategies of therapy in this field.
Collapse
Affiliation(s)
- Anne Faber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Christoph Aderhold
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Ulrich Reinhart Goessler
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Karl Hoermann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Johannes David Schultz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Claudia Umbreit
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Ute Walliczek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Jens Stern-Straeter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| |
Collapse
|
29
|
Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells. J Biomark 2013; 2013:960862. [PMID: 26317026 PMCID: PMC4437354 DOI: 10.1155/2013/960862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/29/2013] [Accepted: 05/08/2013] [Indexed: 01/06/2023] Open
Abstract
Pluripotent stem cell markers can be useful for diagnostic evaluation of human tumors. The novel pluripotent marker stage-specific embryonic antigen-5 (SSEA-5) is expressed in undifferentiated human induced pluripotent cells (iPSCs), but little is known about SSEA-5 expression in other primitive tissues (e.g., human tumors). We evaluated SSEA-5 immunoreactivity patterns in human tumors, cell lines, teratomas, and iPS cells together with another pluripotent cell surface marker L1 cell adhesion molecule (L1CAM). We tested two hypotheses: (1) SSEA-5 and L1CAM would be immunoreactive and colocalized in human tumors; (2) SSEA-5 and L1CAM immunoreactivity would persist in iPSCs following retinal differentiating treatment. SSEA-5 immunofluorescence was most pronounced in primitive tumors, such as embryonal carcinoma. In tumor cell lines, SSEA-5 was highly immunoreactive in Capan-1 cells, while L1CAM was highly immunoreactive in U87MG cells. SSEA-5 and L1CAM showed colocalization in undifferentiated iPSCs, with immunopositive iPSCs remaining after 20 days of retinal differentiating treatment. This is the first demonstration of SSEA-5 immunoreactivity in human tumors and the first indication of SSEA-5 and L1CAM colocalization. SSEA-5 and L1CAM warrant further investigation as potentially useful tumor markers for histological evaluation or as markers to monitor the presence of undifferentiated cells in iPSC populations prior to therapeutic use.
Collapse
|
30
|
Levitt MR, Levitt R, Silbergeld DL. Controversies in the management of brain metastases. Surg Neurol Int 2013; 4:S231-5. [PMID: 23717794 PMCID: PMC3656559 DOI: 10.4103/2152-7806.111300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 01/20/2023] Open
Abstract
The multidisciplinary management of brain metastases has generated substantial controversy as treatment has diversified in recent years. Debate about the type, role, and timing of different diagnostic and therapeutic strategies has promoted rigorous scientific research into efficacy. However, much still remains unanswered in the treatment of this difficult disease process. This manuscript seeks to highlight some of the controversies identified in previous sections of this supplement, including prognosis, pathology, radiation and surgical treatment, neuroimaging, and the biochemical underpinnings of brain metastases. By recognizing what is yet unanswered, we hope to identify areas in which further research may yield promising results.
Collapse
Affiliation(s)
- Michael R Levitt
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle WA, USA
| | | | | |
Collapse
|
31
|
Valarmathi MT, Biechler SV. Feline mammary neoplasms: the cancer stem cell hypothesis. Vet J 2013; 196:277-8. [PMID: 23375347 DOI: 10.1016/j.tvjl.2012.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 11/19/2022]
|