1
|
van der Mijn JC, Chen Q, Laursen KB, Khani F, Wang X, Dorsaint P, Sboner A, Gross SS, Nanus DM, Gudas LJ. Transcriptional and metabolic remodeling in clear cell renal cell carcinoma caused by ATF4 activation and the integrated stress response (ISR). Mol Carcinog 2022; 61:851-864. [PMID: 35726553 PMCID: PMC9378514 DOI: 10.1002/mc.23437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022]
Abstract
Research has shown extensive metabolic remodeling in clear cell renal cell carcinoma (ccRCC), with increased glutathione (GSH) levels. We hypothesized that activating transcription factor-4 (ATF4) and the integrated stress response (ISR) induce a metabolic shift, including increased GSH accumulation, and that Vitamin A deficiency (VAD), found in ccRCCs, can also activate ATF4 signaling in the kidney. To determine the role of ATF4, we used publicly available RNA sequencing (RNA-seq) data sets from The Cancer Genomics Atlas. Subsequently, we performed RNA-seq and liquid chromatography-mass spectrometry-based metabolomics analysis of the murine TRAnsgenic Cancer of the Kidney (TRACK) model for early-stage ccRCC. To validate our findings, we generated RCC4 cell lines with ATF4 gene edits (ATF4-knockout [KO]) and subjected these cells to metabolic isotope tracing. Analysis of variance, the two-sided Student's t test, and gene set enrichment analysis were used (p < 0.05) to determine statistical significance. Here we show that most human ccRCC tumors exhibit activation of the transcription factor ATF4. Activation of ATF4 is concomitant with enrichment of the ATF4 gene set and elevated expression of ATF4 target genes ASNS, ALDH1L2, MTHFD2, DDIT3 (CHOP), DDIT4, TRIB3, EIF4EBP1, SLC7A11, and PPP1R15A (GADD34). Transcript profiling and metabolomics analyses show that activated hypoxia-inducible factor-1α (HIF1α) signaling in our TRACK ccRCC murine model also induces an ATF4-mediated ISR. Notably, both normoxic HIF1α signaling in TRACK kidneys and VAD in wild-type kidneys diminish amino acid levels, increase ASNS, TRIB3, and MTHFD2 messenger RNA levels, and increase levels of lipids and GSH. By metabolic isotope tracing in human RCC4 kidney cancer parental and ATF4 gene-edited (ATF4-KO) cell lines, we show that ATF4 increases GSH accumulation in part via activation of the mitochondrial one-carbon metabolism pathway. Our results demonstrate for the first time that activation of ATF4 enhances GSH accumulation, increases purine and pyrimidine biosynthesis, and contributes to transcriptional and metabolic remodeling in ccRCC. Moreover, constitutive HIF1α expressed only in murine kidney proximal tubules activates ATF4, leading to the metabolic changes associated with the ISR. Our data indicate that HIF1α can promote ccRCC via ATF4 activation. Moreover, lack of Vitamin A in the kidney recapitulates aspects of the ISR.
Collapse
Affiliation(s)
- Johannes C. van der Mijn
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- current address: Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Qiuying Chen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kristian B. Laursen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Xiaofei Wang
- Department of Physiology and Biophysics, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Princesca Dorsaint
- Department of Physiology and Biophysics, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Steven S. Gross
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - David M. Nanus
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Histological Tracking into the Third Dimension: Evolution of Early Tumorigenesis in VHL Kidney. J Kidney Cancer VHL 2021; 8:5-14. [PMID: 34589381 PMCID: PMC8435883 DOI: 10.15586/jkcvhl.v8i3.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
Using a novel three-dimensional (3D) approach, we tracked histological changes to elucidate the earliest stages of renal clear cell neoplasia in normal kidney tissue of patients with von Hippel-Lindau (VHL) disease. Tissue blocks of interest were procured, serially sectioned, and 3D reconstruction of the entirety of pathologic events was performed. The results reveal an abundance of foci with aberrant clear cell proliferation that initially develop along the tubular lining, but have the potential to aggregate within individual tubules. This stage is followed by the extension of clear cell aggregates beyond the tubular basement membrane, which allows for the recruitment of angiogenesis derived from interstitial vasculature. The results suggest that the most frequent pathologic event in VHL kidneys is the presence of isolated or aggregated clear cells within the tubular epithelium, potentially developing further into a protracted process of neoplasia. The abundance of independent pathologic events in VHL kidneys confirms developmental mechanisms to precede tumor initiation. To our knowledge, this is the first report demonstrating that tracking of histologic changes in the 3rd dimension enables the confirmation of the sequence of events from the earliest pathologic change in the VHL kidney to the neoplastic stage. This approach is not only useful for visualization and quantification of pathologic changes but also for targeted sampling allowing selective analysis of the earliest stages of clear cell carcinogenesis.
Collapse
|
3
|
Thomas MU, Messex JK, Dang T, Abdulkadir SA, Jorcyk CL, Liou GY. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK. FEBS J 2020; 288:1871-1886. [PMID: 32865335 DOI: 10.1111/febs.15541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
The risk factors for prostate cancer include a high-fat diet and obesity, both of which are associated with an altered cell environment including increased inflammation. It has been shown that chronic inflammation due to a high-fat diet or bacterial infection has the potential to accelerate prostate cancer as well as its precursor, prostatic intraepithelial neoplasia (PIN), development. However, the underlying mechanism of how chronic inflammation promotes prostate cancer development, especially PIN, remains unclear. In this study, we showed that more macrophages were present in PIN areas as compared to the normal areas of human prostate. When co-culturing PIN cells with macrophages in 3D, more PIN cells had nuclear localized cyclin D1, indicating that macrophages enhanced PIN cell proliferation. We identified ICAM-1 and CCL2 as chemoattractants expressed by PIN cells to recruit macrophages. Furthermore, we discovered that macrophage-secreted cytokines including C5a, CXCL1, and CCL2 were responsible for increased PIN cell proliferation. These three cytokines activated ERK and JNK signaling in PIN cells through a ligand-receptor interaction. However, only blockade of ERK abolished macrophage cytokines-induced cell proliferation of PIN. Overall, our results provide a mechanistic view on how macrophages activated through chronic inflammation can expedite PIN progression during prostate cancer development. The information from our work can facilitate a comprehensive understanding of prostate cancer development, which is required for improvement of current strategies for prostate cancer therapy.
Collapse
Affiliation(s)
- Mikalah U Thomas
- Department of Biological Sciences, Clark Atlanta University, GA, USA
| | - Justin K Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Tu Dang
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, IL, USA.,Department of Pathology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Cheryl L Jorcyk
- Department of Biological Science, Boise State University, ID, USA
| | - Geou-Yarh Liou
- Department of Biological Sciences, Clark Atlanta University, GA, USA.,Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| |
Collapse
|
4
|
Khani F, Wobker SE, Hicks JL, Robinson BD, Barbieri CE, De Marzo AM, Epstein JI, Pritchard CC, Lotan TL. Intraductal carcinoma of the prostate in the absence of high‐grade invasive carcinoma represents a molecularly distinct type of
in situ
carcinoma enriched with oncogenic driver mutations. J Pathol 2019; 249:79-89. [DOI: 10.1002/path.5283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Francesca Khani
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Department of Urology Weill Cornell Medicine New York NY USA
| | - Sara E Wobker
- Department of Pathology and Laboratory Medicine UNC Chapel Hill Chapel Hill NC USA
| | - Jessica L Hicks
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Department of Urology Weill Cornell Medicine New York NY USA
| | | | - Angelo M De Marzo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jonathan I Epstein
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Colin C Pritchard
- Department of Laboratory Medicine University of Washington Seattle WA USA
| | - Tamara L Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
5
|
Genco IS, Ratzon F, Glickman L, Santagada E, Unger P. Intratubular Teratoma: A Rare Form of Testicular Germ Cell Neoplasia. Int J Surg Pathol 2019; 27:556-560. [PMID: 30907201 DOI: 10.1177/1066896919836491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Germ cell neoplasia in situ is the initial manifestation for invasive germ cell tumor. Further progression will result in intratubular germ cell tumor with the majority being intratubular seminoma or intratubular embryonal carcinoma. Intratubular teratoma in the testis is exceptionally rare with no well-documented cases to our knowledge. In this article, we report a case of an intratubular teratoma adjacent to mixed germ cell tumor in the testis. The patient is a 34-year-old male who presented with a palpable right testicular mass and underwent right radical orchiectomy. Gross examination of the testis revealed 2.0-cm tan, well-circumscribed, firm, and nodular mass at the inferior pole. Microscopic examination revealed a mixed germ cell tumor, predominantly seminoma (95%) with embryonal carcinoma (4%) and teratoma (1%). There is also germ cell neoplasia in situ, intratubular seminoma, and intratubular teratoma at the periphery of the tumor. Tubules with intratubular teratoma were filled by neoplastic squamous cells with a single layer of germ cell neoplasia in situ at the periphery. Adjacent to the intratubular teratoma was seminoma, embryonal carcinoma, and invasive teratoma. Immunohistochemical stains showed the neoplastic squamous cells in the tubule to be positive for p40 and negative for OCT34 and D2-40. The single layer of germ cell neoplasia in situ at the periphery of the intratubular teratoma was negative for p40 and positive for OCT34 and D2-40. Although teratoma is a common component in an adult germ cell tumor, an intratubular manifestation is exceptional. The present case illustrates this rare finding.
Collapse
Affiliation(s)
| | - Fanni Ratzon
- 1 Northwell Health Lenox Hill Hospital, New York, NY, USA
| | | | | | - Pamela Unger
- 1 Northwell Health Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|