1
|
DuBois SG, Krailo MD, Glade-Bender J, Buxton A, Laack N, Randall RL, Chen HX, Seibel NL, Boron M, Terezakis S, Hill-Kayser C, Hayes A, Reid JM, Teot L, Rakheja D, Womer R, Arndt C, Lessnick SL, Crompton BD, Kolb EA, Daldrup-Link H, Eutsler E, Reed DR, Janeway KA, Gorlick RG. Randomized Phase III Trial of Ganitumab With Interval-Compressed Chemotherapy for Patients With Newly Diagnosed Metastatic Ewing Sarcoma: A Report From the Children's Oncology Group. J Clin Oncol 2023; 41:2098-2107. [PMID: 36669140 PMCID: PMC10082251 DOI: 10.1200/jco.22.01815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 12/12/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Monoclonal antibodies directed against insulin-like growth factor-1 receptor (IGF-1R) have shown activity in patients with relapsed Ewing sarcoma. The primary objective of Children's Oncology Group trial AEWS1221 was to determine if the addition of the IGF-1R monoclonal antibody ganitumab to interval-compressed chemotherapy improves event-free survival (EFS) in patients with newly diagnosed metastatic Ewing sarcoma. METHODS Patients were randomly assigned 1:1 at enrollment to standard arm (interval-compressed vincristine/doxorubicin/cyclophosphamide alternating once every 2 weeks with ifosfamide/etoposide = VDC/IE) or to experimental arm (VDC/IE with ganitumab at cycle starts and as monotherapy once every 3 weeks for 6 months after conventional therapy). A planned sample size of 300 patients was projected to provide 81% power to detect an EFS hazard ratio of 0.67 or smaller for the experimental arm compared with the standard arm with a one-sided α of .025. RESULTS Two hundred ninety-eight eligible patients enrolled (148 in standard arm; 150 in experimental arm). The 3-year EFS estimates were 37.4% (95% CI, 29.3 to 45.5) for the standard arm and 39.1% (95% CI, 31.3 to 46.7) for the experimental arm (stratified EFS-event hazard ratio for experimental arm 1.00; 95% CI, 0.76 to 1.33; 1-sided, P = .50). The 3-year overall survival estimates were 59.5% (95% CI, 50.8 to 67.3) for the standard arm and 56.7% (95% CI, 48.3 to 64.2) for the experimental arm. More cases of pneumonitis after radiation involving thoracic fields and nominally higher rates of febrile neutropenia and ALT elevation were reported on the experimental arm. CONCLUSION Ganitumab added to interval-compressed chemotherapy did not significantly reduce the risk of EFS event in patients with newly diagnosed metastatic Ewing sarcoma, with outcomes similar to prior trials without IGF-1R inhibition or interval compression. The addition of ganitumab may be associated with increased toxicity.
Collapse
Affiliation(s)
- Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Mark D. Krailo
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Julia Glade-Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Allen Buxton
- Children's Oncology Group Statistics and Data Center, Monrovia, CA
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - R. Lor Randall
- Department of Orthopedic Surgery, UC Davis Medical Center, Sacramento, CA
| | - Helen X. Chen
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Nita L. Seibel
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Matthew Boron
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN
| | - Christine Hill-Kayser
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrea Hayes
- Department of Surgery, Howard University College of Medicine, Washington, DC
| | - Joel M. Reid
- Department of Oncology, Mayo Clinic, Rochester, MN
| | - Lisa Teot
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Richard Womer
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carola Arndt
- Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Stephen L. Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH
- The Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH
| | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - E. Anders Kolb
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA
| | - Heike Daldrup-Link
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA
| | - Eric Eutsler
- Department of Radiology, Washington University School of Medicine, St Louis, MO
| | - Damon R. Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Katherine A. Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
2
|
Daley J, Williams N, Salgado CM, Schultz C, Meade J, Ozolek J, Lindsey B, Bailey KM. Cutaneous Ewing Sarcoma Presenting as a Second Primary Malignancy in a Child. J Pediatr Hematol Oncol 2022; 44:486-488. [PMID: 35426856 PMCID: PMC9562594 DOI: 10.1097/mph.0000000000002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Ewing sarcoma is an EWS-ETS family member-driven malignancy that most commonly arises from bone. Cutaneous Ewing sarcoma is a rare variant which harbors an EWS-ETS family fusion but demonstrates an immunohistochemical staining pattern distinct from classic Ewing tumors. EWSR1 fluorescence in situ hybridization testing interpretation can be challenging in the setting of cutaneous Ewing sarcoma, making an integrated histologic and sequencing approach key for an accurate diagnosis. Here, we report a pediatric patient with a history of neuroblastoma treated with surgery only that developed a cutaneous nodule and was diagnosed with cutaneous Ewing sarcoma as a second primary cancer.
Collapse
Affiliation(s)
- Jessica Daley
- Department of Pediatrics, Division of Pediatric Oncology, University of Pittsburgh School of Medicine
| | | | | | - Charles Schultz
- Department of Pathology, West Virginia University School of Medicine
| | - Julia Meade
- Department of Pediatrics, Division of Pediatric Oncology, University of Pittsburgh School of Medicine
| | - John Ozolek
- Department of Pathology, West Virginia University School of Medicine
| | - Brock Lindsey
- Department of Orthopaedics, West Virginia University School of Medicine
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Oncology, University of Pittsburgh School of Medicine
| |
Collapse
|
3
|
Rapid and highly sensitive approach for multiplexed somatic fusion detection. Mod Pathol 2022; 35:1022-1033. [PMID: 35347250 PMCID: PMC9314249 DOI: 10.1038/s41379-022-01058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Somatic gene translocations are key to making an accurate diagnosis in many cancers including many pediatric sarcomas. Currently available molecular diagnostic approaches to identifying somatic pathognomonic translocations have limitations such as minimal multiplexing, high cost, complex computational requirements, or slow turnaround times. We sought to develop a new fusion-detection assay optimized to mitigate these challenges. To accomplish this goal, we developed a highly sensitive multiplexed digital PCR-based approach that can identify the gene partners of multiple somatic fusion transcripts. This assay was validated for specificity with cell lines and synthetized DNA fragments. Assay sensitivity was optimized using a tiered amplification approach for fusion detection from low input and/or degraded RNA. The assay was then tested for the potential application of fusion detection from FFPE tissue and liquid biopsy samples. We found that this multiplexed PCR approach was able to accurately identify the presence of seven different targeted fusion transcripts with a turnaround time of 1 to 2 days. The addition of a tiered amplification step allowed the detection of targeted fusions from as little as 1 pg of RNA input. We also identified fusions from as little as two unstained slides of FFPE tumor biopsy tissue, from circulating tumor cells collected from tumor-bearing mice, and from liquid biopsy samples from patients with known fusion-positive cancers. We also demonstrated that the assay could be easily adapted for additional fusion targets. In summary, this novel assay detects multiple somatic fusion partners in biologic samples with low tumor content and low-quality RNA in less than two days. The assay is inexpensive and could be applied to surgical and liquid biopsies, particularly in places with inadequate resources for more expensive and expertise-dependent assays such as next-generation sequencing.
Collapse
|
4
|
Kulaç İ, Bulutay P, Aydın Meriçöz Ç. What Would Next Generation Sequencing Bring to the Diagnosis and Treatment of Sarcomas? A Series of 20 Cases, a Single Institution's Experience. Turk Patoloji Derg 2021; 37:226-232. [PMID: 34514574 PMCID: PMC10510605 DOI: 10.5146/tjpath.2021.01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Soft tissue tumors comprise a small proportion of a pathologist's routine practice. Although morphology and immunohistochemistry are quite helpful for diagnosing these tumors, many require molecular tests. Fluorescence in-situ hybridization has been the most commonly used method for the detection of specific genomic alteration, but next generation sequencing (NGS) could be more informative in many ways. Here we present our targeted NGS experience on soft tissue tumors with a series of 20 cases. MATERIAL AND METHOD The Laboratory Information System (LIS) was screened for soft tissue tumors that had been sequenced by NGS (between January 2018 - February 2021). 20 consecutive cases were included in the study. All cases were sequenced using a commercial targeted sequencing panel designed for soft tissue tumors. RESULTS We were able to run a reliable sequencing study for 16 (80%) of the cases but 4 (20%) of them failed in quality tests. We have found pathogenic alterations in 12 (60%) of the cases. The most common alterations were EWSR1 fusions, FLI1 being the most common partner. NGS results drastically changed the initial diagnosis, and thus the treatment modalities, in 3 cases (15%): the case with ETV6-NTRK3 fusion, the case with FUS-TFCP2 fusion, and the case of rhabdomyosarcoma (RMS) that was favored to be of the alveolar subtype and turned out to lack FOXO1 fusions. CONCLUSION A targeted NGS panel is robust and very informative. It not only allows pathologists to further specify and/or confirm their diagnosis but it could also play an important role in predicting the outcome.
Collapse
Affiliation(s)
- İbrahim Kulaç
- Department of Pathology, Koç University, School of Medicine, Istanbul, Turkey
| | - Pınar Bulutay
- Department of Pathology, Koç University, School of Medicine, Istanbul, Turkey
| | - Çisel Aydın Meriçöz
- Department of Pathology, Koç University, School of Medicine, Istanbul, Turkey
| |
Collapse
|