1
|
Teles EAP, Xavier JF, Arcênio FS, Amaya RL, Gonçalves JVS, Rouws LFM, Zonta E, Coelho IS. Characterization and evaluation of potential halotolerant phosphate solubilizing bacteria from Salicornia fruticosa rhizosphere. FRONTIERS IN PLANT SCIENCE 2024; 14:1324056. [PMID: 38293620 PMCID: PMC10825674 DOI: 10.3389/fpls.2023.1324056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Soil salinization is a significant abiotic factor threatening agricultural production, while the low availability of phosphorus (P) in plants is another worldwide limitation. Approximately 95-99% of the P in soil is unavailable to plants. Phosphate-solubilizing bacteria (PSB) transform insoluble phosphates into soluble forms that plants can utilize. The application of PSB can replace or partially reduce the use of P fertilizers. Therefore, selecting bacteria with high solubilization capacity from extreme environments, such as saline soils, becomes crucial. This study aimed to identify twenty-nine bacterial strains from the rhizosphere of Salicornia fruticosa by sequencing the 16S rDNA gene, evaluate their development in increasing concentrations of NaCl, classify them according to their salinity response, and determine their P solubilization capability. The bacteria were cultivated in nutrient agar medium with NaCl concentrations ranging from 0.5% to 30%. The phosphate solubilization capacity of the bacteria was evaluated in angar and broth National Botanical Research Institute (NBRIP) media supplemented with calcium phosphate (CaHPO4) and aluminum phosphate (AlPO4), and increased with 3% NaCl. All bacterial strains were classified as halotolerant and identified to the genera Bacillus, Enterobacter, Halomonas, Kushneria, Oceanobacillus, Pantoea, Pseudomonas, and Staphylococcus, with only one isolate was not identified. The isolates with the highest ability to solubilize phosphorus from CaHPO4 in the liquid medium were Kushneria sp. (SS102) and Enterobacter sp. (SS186), with 989.53 and 956.37 mg·Kg-1 P content and final pH of 4.1 and 3.9, respectively. For the solubilization of AlPO4, the most effective isolates were Bacillus sp. (SS89) and Oceanobacillus sp. (SS94), which raised soluble P by 61.10 and 45.82 mg·Kg-1 and final pH of 2.9 and 3.6, respectively. These bacteria demonstrated promising results in in vitro P solubilization and can present potential for the development of bioinput. Further analyses, involving different phosphate sources and the composition of produced organic acids, will be conducted to contribute to a comprehensive understanding of their applications in sustainable agriculture.
Collapse
Affiliation(s)
- E. A. P. Teles
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - J. F. Xavier
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - F. S. Arcênio
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - R. L. Amaya
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - J. V. S. Gonçalves
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - E. Zonta
- Laboratory of Soil-Plant Relationship, Department of Soils, Institute of Agronomy, UFRRJ, Seropedica, Brazil
| | - I. S. Coelho
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
2
|
Chapuis MP, Benoit L, Galan M. Evaluation of 96-well high-throughput DNA extraction methods for 16S rRNA gene metabarcoding. Mol Ecol Resour 2023; 23:1509-1525. [PMID: 37254809 DOI: 10.1111/1755-0998.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Gaining meaningful insights into bacterial communities associated with animal hosts requires the provision of high-quality nucleic acids. Although many studies have compared DNA extraction methods for samples with low bacterial biomass (e.g. water) or specific PCR inhibitors (e.g. plants), DNA extraction bias in samples without inherent technical constraint (e.g. animal samples) has received little attention. Furthermore, there is an urgent need to identify a DNA extraction methods in a high-throughput format that decreases the cost and time for processing large numbers of samples. We here evaluated five DNA extraction protocols, using silica membrane-based spin columns and a 96-well microplate format and based on either mechanical or enzymatic lysis or a combination of both, using three bacterial mock communities and Illumina sequencing of the V4 region of the 16SrRNA gene. Our results showed that none of the DNA extraction methods fully eliminated bias associated with unequal lysis efficiencies. However, we identified a DNA extraction method with a lower bias for each mock community standard. Of these methods, those including an enzymatic lysis showed biases specific to some bacteria. Altogether, these results again demonstrate the importance of DNA extraction standardization to be able to compare the microbiome results of different samples. In this attempt, we advise for the use of the 96-well DNeasy Blood and Tissue kit (Qiagen) with a zirconia bead-beating procedure, which optimizes altogether the cost, handling time and bacteria-specific effects associated with enzymatic lysis.
Collapse
Affiliation(s)
- Marie-Pierre Chapuis
- CBGP, CIRAD, Montpellier SupAgro, INRAE, IRD, University of Montpellier, Montpellier, France
- CIRAD, CBGP, Montpellier, France
| | - Laure Benoit
- CBGP, CIRAD, Montpellier SupAgro, INRAE, IRD, University of Montpellier, Montpellier, France
- CIRAD, CBGP, Montpellier, France
| | - Maxime Galan
- CBGP, INRAE, Montpellier SupAgro, INRAE, IRD, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. Int Microbiol 2019; 22:479-490. [PMID: 30989358 DOI: 10.1007/s10123-019-00075-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Bacterial diseases are the main cause of high economic loss in aquaculture, particularly gram-negative bacteria. This study was conducted for the isolation and identification of Aeromonas and Pseudomonas spp. from diseased fish. Twenty-two Aeromonas and sixteen Pseudomonas isolates were recovered from diseased Nile tilapia (Oreochromis niloticus) raised in eight earthen ponds in Elhox, Metoubes, Kafrelsheikh, Egypt. The recovered isolates were further identified using PCR as 22 Aeromonas hydrophila, 11 Pseudomonas aeruginosa, and 5 Pseudomonas fluorescens isolates. The 22 A. hydrophila isolates were screened for the presence of four virulence genes. Sixteen of the isolates (72.72%) were positive for the aerolysin gene (aer); 4 (18.18%) harbored the cytotoxic enterotoxin gene (act); and 2 (9.09%) carried the hemolysin A gene (hylA) while the cytotonic heat-stable enterotoxin gene (ast) was absent from all the tested isolates. The pathogenicity test indicated the direct relationship between the mortality percentage and the genotype of the tested A. hydrophila isolates as the mortality rates were 63.3 and 73.3% for isolates with two virulence genes (aer+ & act+, and aer+ and hylA+, respectively), followed by 40, 53.3, and 56.6% for isolates with only one virulence gene (hylA, act, and aer, respectively) and 20% for isolates lacking virulence genes. Based on the sensitivity test, the multi-antibiotic resistance profiles were as follows: 90.9% of the A. hydrophila isolates were sensitive to florfenicol and doxycycline; then 68.18% were susceptible to oxytetracycline, norfloxacin, and ciprofloxacin; and 63.63% were susceptible to sulfamethoxazole-trimethoprim, while only 27.27 and 4.5% were sensitive to erythromycin and cephradine, respectively, and all the isolates were resistant to amoxicillin and ampicillin.
Collapse
|
4
|
Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol 2016; 48:118-124. [PMID: 27913076 PMCID: PMC5221365 DOI: 10.1016/j.bjm.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 05/30/2016] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus spp. play an important role in the etiology of bovine mastitis. Staphylococcus aureus is considered the most relevant species due to the production of virulence factors such as slime, which is required for biofilm formation. This study aimed to evaluate biofilm production and its possible relation to beta-lactamic resistance in 20 S. aureus isolates from bovine mastitic milk. The isolates were characterized by pheno-genotypic and MALDI TOF-MS assays and tested for genes such as icaA, icaD, bap, agr RNAIII, agr I, agr II, agr III, and agr IV, which are related to slime production and its regulation. Biofilm production in microplates was evaluated considering the intervals determined along the bacterial growth curve. In addition, to determine the most suitable time interval for biofilm analysis, scanning electron microscopy was performed. Furthermore, genes such as mecA and blaZ that are related to beta-lactamic resistance and oxacillin susceptibility were tested. All the studied isolates were biofilm producers and mostly presented icaA and icaD. The Agr type II genes were significantly prevalent. According to the SEM, gradual changes in the bacterial arrangement were observed during biofilm formation along the growth curve phases, and the peak was reached at the stationary phase. In this study, the penicillin resistance was related to the production of beta-lactamase, and the high minimal bactericidal concentration for cefoxitin was possibly associated with biofilm protection. Therefore, further studies are warranted to better understand biofilm formation, possibly contributing to our knowledge about bacterial resistance in vivo.
Collapse
|