1
|
Lin XC, Pan M, Zhu LP, Sun Q, Zhou ZS, Li CC, Zhang GG. NFAT5 promotes arteriogenesis via MCP-1-dependent monocyte recruitment. J Cell Mol Med 2019; 24:2052-2063. [PMID: 31883300 PMCID: PMC6991654 DOI: 10.1111/jcmm.14904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 01/24/2023] Open
Abstract
Studies have demonstrated that nuclear factor of activated T cells 5 (NFAT5) is not only a tonicity‐responsive transcription factor but also activated by other stimuli, so we aim to investigate whether NFAT5 participates in collateral arteries formation in rats. We performed femoral artery ligature (FAL) in rats for hindlimb ischaemia model and found that NFAT5 was up‐regulated in rat adductors with FAL compared with sham group. Knockdown of NFAT5 with locally injection of adenovirus‐mediated NFAT5‐shRNA in rats significantly inhibited hindlimb blood perfusion recovery and arteriogenesis. Moreover, NFAT5 knockdown decreased macrophages infiltration and monocyte chemotactic protein‐1 (MCP‐1) expression in rats adductors. In vitro, with interleukin‐1β (IL‐1β) stimulation and loss‐of‐function studies, we demonstrated that NFAT5 knockdown inhibits MCP‐1 expression in endothelial cells and chemotaxis of THP‐1 cells regulated by ERK1/2 pathway. More importantly, exogenous MCP‐1 delivery could recover hindlimb blood perfusion, promote arteriogenesis and macrophages infiltration in rats after FAL, which were depressed by NFAT5 knockdown. Besides, NFAT5 knockdown also inhibited angiogenesis in gastrocnemius muscles in rats. Our results indicate that NFAT5 is a critical regulator of arteriogenesis and angiogenesis via MCP‐1‐dependent monocyte recruitment, suggesting that NFAT5 may represent an alternative therapeutic target for ischaemic diseases.
Collapse
Affiliation(s)
- Xing-Chi Lin
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Pan
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ping Zhu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Shi Zhou
- Department of Laboratory Animal, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Gastroenterological Perspectives on Acute Cardiac Care — the Management of Patients with Implanted Coronary Stents Following an Acute Coronary Syndrome. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2018. [DOI: 10.2478/jce-2018-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cardiovascular and digestive diseases frequently share the same risk factors such as obesity, unhealthy diet, or several social behaviors, and the increasing prevalence of patients with overlapped cardiovascular and digestive symptoms is a challenging problem in the daily practice. Patients with gastro-esophageal reflux disease can exhibit various forms of chest pain that can be very similar to angina. Furthermore, antithrombotic therapies used for preventive or curative purposes in patients with cardiovascular diseases are frequently associated with gastrointestinal side effects including bleeding. At the same time, in patients with coronary stents presenting to the emergency department with chest pain, angina triggered by stent thrombosis or restenosis should be differentiated from angina-like symptoms caused by a gastrointestinal disease. The aim of this review was to present the complex inter-relation between gastroesophageal diseases and angina in patients on dual antiplatelet therapy following an acute coronary syndrome, with a particular emphasis on the role of anemia resulting from occult or manifest gastrointestinal bleeding, as a precipitating factor for triggering or aggravating angina.
Collapse
|
3
|
Microfabrication for Drug Delivery. MATERIALS 2016; 9:ma9080646. [PMID: 28773770 PMCID: PMC5509096 DOI: 10.3390/ma9080646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems.
Collapse
|