1
|
Bischoff Nunes I, Goodwin PH. Interaction of Ginseng with Ilyonectria Root Rot Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2152. [PMID: 36015455 PMCID: PMC9416147 DOI: 10.3390/plants11162152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
The Ilyonectria radicicola species complex (A.A. Hildebr.) A. Cabral and Crous 2011 contains species of soilborne necrotrophic plant pathogens. The most aggressive to ginseng roots is I. mors-panacis, whereas I. robusta, I. crassa, I. panacis and I. radicicola are less aggressive. Infected ginseng roots show orange-red to black-brown lesions that can expand into a severe root rot, known as disappearing root rot, where only epidermal root tissue remains. Leaves become red-brown with wilting, and stems can have vascular discoloration with black-brown lesions at the base. Less aggressive Ilyonectria species trigger jasmonic acid (JA)-related defenses inducing host ginsenosides, pathogenesis-related (PR) proteins, wound periderm, and cell wall thickening. In contrast, I. mors-panacis triggers reactive oxygen species (ROS) and salicylic acid (SA) production but suppresses JA-related defenses and ginsenoside accumulation. It is also able to suppress SA-related PR protein production. Virulence factors include potential effectors that may suppress PAMP (Pathogen Associated Molecular Patterns) triggered immunity (PTI), polyphenoloxidases, Hsp90 inhibitors, siderophores and cell-wall-degrading enzymes, such as pectinases. Overall, I. mors-panacis appears to be more aggressive because it can suppress JA and SA-related PTI allowing for more extensive colonization of ginseng roots. While many possible mechanisms of host resistance and pathogen virulence mechanisms have been examined, there is a need for using genetic approaches, such as RNAi silencing of genes of Panax or Ilyonectria, to determine their importance in the interaction.
Collapse
Affiliation(s)
- Isadora Bischoff Nunes
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
2
|
Analysis of RGB Plant Images to Identify Root Rot Disease in Korean Ginseng Plants Using Deep Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ginseng is an important medicinal plant in Korea. The roots of the ginseng plant have medicinal properties; thus, it is very important to maintain the quality of ginseng roots. Root rot disease is a major disease that affects the quality of ginseng roots. It is important to predict this disease before it causes severe damage to the plants. Hence, there is a need for a non-destructive method to identify root rot disease in ginseng plants. In this paper, a method to identify the root rot disease by analyzing the RGB plant images using image processing and deep learning is proposed. Initially, plant segmentation is performed, and then the noise regions are removed in the plant images. These images are given as input to the proposed linear deep learning model to identify root rot disease in ginseng plants. Transfer learning models are also applied to these images. The performance of the proposed method is promising in identifying root rot disease.
Collapse
|
3
|
Liu L, Li H, Liu Y, Li Y, Wang H. Whole Transcriptome Analysis Provides Insights Into the Molecular Mechanisms of Chlamydospore-Like Cell Formation in Phanerochaete chrysosporium. Front Microbiol 2020; 11:527389. [PMID: 33365015 PMCID: PMC7750433 DOI: 10.3389/fmicb.2020.527389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Phanerochaete chrysosporium is a white rot fungus naturally isolated from hardwoods and widely used in environmental pollution control because it produces extracellular peroxidases. It forms chlamydospores during nitrogen starvation, which naturally occurs in the habitat of P. chrysosporium. Chlamydospores protect fungi against many stresses; the molecular basis underlying chlamydospore formation in basidiomycetes is poorly explored. Chlamydospores in P. chrysosporium have a different cell wall compared with hyphae, as confirmed by cell wall digestion and microscopy. Furthermore, this study investigated the transcriptome of P. chrysosporium in different life stages, including conidium, hypha, and chlamydospore formation, through RNA sequencing. A total of 2215 differentially expressed genes were identified during these processes. The expression patterns of genes involved in several molecular events critical for chlamydospore formation, including starch and sucrose metabolism, phosphatase and kinase, and transcription factors, were determined. This study serves as a basis for further investigating the function of chlamydospore formation in the biotechnologically relevant fungus P. chrysosporium.
Collapse
Affiliation(s)
- Lei Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Huihui Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanyan Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Yuan BH, Li H, Liu L, Du XH. Successful induction and recognition of conidiation, conidial germination and chlamydospore formation in pure culture of Morchella. Fungal Biol 2020; 125:285-293. [PMID: 33766307 DOI: 10.1016/j.funbio.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Morels, fungi from the genus Morchella, are popular edible mushrooms. However, little knowledge of their asexual reproduction and inaccessible pure mitospores hamper illumination of their life cycle. Herein, we successfully induced conidiation, conidial germination and chlamydospore formation in pure culture of Morchella sextelata. Conidiation proceeded via four morphologically distinct stages: development of the conidiophore stalk, stalk branching, phialide differentiation, and conidium production. Terminal and intercalary chlamydospores were formed on conidial hyphae. The development of conidiophores occurred earlier, with more conidia produced, in cross-mating cultures than in single-spore cultures. Mature conidia were spherical and 2.5-8 μm in diameter, with a vast majority (nearly 99%) 2.5-5 μm in diameter. Each conidium contained one to three nuclei (80.2% conidia contained one nucleus, 19.1% contained two nuclei, and 0.7% contained three nuclei). The conidial nucleus diameter was 1-2 μm. The nuclear mitosis in detached conidia that was observed may benefit their colony initiation. Additionally, morel conidia formed conidial anastomosis tubes. Conidia (mitospores) likely not only function as spermatia, but also as reproductive propagules in Morchella. Further research is imperative to elucidate the relationship between the conidia and chlamydospores, and their unique function in the morel life cycle.
Collapse
Affiliation(s)
- Bin-Hong Yuan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Huan Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Lu Liu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
5
|
Jung B, Li T, Ji S, Lee J. Efficacy of Diphenyleneiodonium Chloride (DPIC) Against Diverse Plant Pathogens. MYCOBIOLOGY 2019; 47:105-111. [PMID: 31001452 PMCID: PMC6452913 DOI: 10.1080/12298093.2018.1559122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Many of the fungicides and antibiotics currently available against plant pathogens are of limited use due to the emergence of resistant strains. In this study, we examined the effects of diphenyleneiodonium chloride (DPIC), an inhibitor of the superoxide producing enzyme NADPH oxidase, against fungal and bacterial plant pathogens. We found that DPIC inhibits fungal spore germination and bacterial cell proliferation. In addition, we demonstrated the potent antibacterial activity of DPIC using rice heads infected with the bacterial pathogen Burkholderia glumae which causes bacterial panicle blight (BPB). We found that treatment with DPIC reduced BPB when applied during the initial flowering stage of the rice heads. These results suggest that DPIC could serve as a new and useful antimicrobial agent in agriculture.
Collapse
Affiliation(s)
- Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Taiying Li
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Sungyeon Ji
- Department of Applied Biology, Dong-A University, Busan, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, Korea
| |
Collapse
|
6
|
Sun ZB, Zhang J, Sun MH, Li SD. Identification of genes related to chlamydospore formation in Clonostachys rosea 67-1. Microbiologyopen 2018; 8:e00624. [PMID: 29635882 PMCID: PMC6341034 DOI: 10.1002/mbo3.624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 01/15/2023] Open
Abstract
Chlamydospores are specific structures that are of great significance to the commercialization of fungal biopesticides. To explore the genes associated with chlamydospore formation, a biocontrol fungus Clonostachys rosea 67‐1 that is capable of producing resistant spores under particular conditions was investigated by transcriptome sequencing and analysis. A total of 549,661,174 clean reads were obtained, and a series of differentially expressed genes potentially involved in fungal chlamydospore formation were identified. At 36 hr, 67 and 117 genes were up‐ and downregulated in C. rosea during chlamydospore production, compared with the control for conidiation, and 53 and 24 genes were up‐ and downregulated at 72 hr. GO classification suggested that the differentially expressed genes were related to cellular component, biological process, and molecular function categories. A total of 188 metabolism pathways were linked to chlamydospore production by KEGG analysis. Sixteen differentially expressed genes were verified by reverse transcription quantitative PCR, and the expression profiles were consistent with the transcriptome data. To the best of our knowledge, it is the first report on the genes associated with chlamydospore formation in C. rosea. The results provide insight into the molecular mechanisms underlying C. rosea sporulation, which will assist the development of fungal biocontrol agents.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Shin JH, Fu T, Park KH, Kim KS. The Effect of Fungicides on Mycelial Growth and Conidial Germination of the Ginseng Root Rot Fungus, Cylindrocarpon destructans. MYCOBIOLOGY 2017; 45:220-225. [PMID: 29138629 PMCID: PMC5673520 DOI: 10.5941/myco.2017.45.3.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 05/15/2023]
Abstract
Ginseng root rot caused by Cylindrocarpon destructans is the most destructive disease of ginseng. Six different fungicides (thiophanate-methyl, benomyl, prochloraz, mancozeb, azoxystrobin, and iprodione) were selected to evaluate the inhibitory effect on the mycelial growth and conidial germination of C. destructans isolates. Benomyl and prochloraz were found to be the most effective fungicides in inhibiting mycelial growth of all tested isolates, showing 64.7% to 100% inhibition at a concentration of 10 µg/mL, whereas thiophanate-methyl was the least effective fungicide, showing less than 50% inhibition even at a higher concentration of 100 µg/mL. The tested fungicides exhibited less than 20% inhibition of conidium germination at concentrations of 0.01, 0.1, and 1 µg/mL. However, the inhibition effect of mancozeb on condium germination of C. destructans was significantly increased to 92% to 99% at a higher concentration of 100 µg/mL, while the others still showed no higher than 30% inhibition.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Teng Fu
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Kyeong Hun Park
- Department of Herbal Crop Research, National Institute of Agriculture Science, RDA, Eumseong 277708, Korea
| | - Kyoung Su Kim
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341, Korea
- BioHerb Research Institute, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|