1
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
2
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
3
|
Wang Y, Li Q, Zhao J, Chen J, Wu D, Zheng Y, Wu J, Liu J, Lu J, Zhang J, Wu Z. Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy. Nat Commun 2023; 14:6148. [PMID: 37783697 PMCID: PMC10545739 DOI: 10.1038/s41467-023-41700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Current approaches in myocardial infarction treatment are limited by low cellular oxidative stress resistance, reducing the long-term survival of therapeutic cells. Here we develop a liquid-crystal substrate with unique surface properties and mechanical responsiveness to produce size-controllable cardiospheres that undergo pyroptosis to improve cellular bioactivities and resistance to oxidative stress. We perform RNA sequencing and study cell metabolism to reveal increased metabolic levels and improved mitochondrial function in the preconditioned cardiospheres. We test therapeutic outcomes in a rat model of myocardial infarction to show that cardiospheres improve long-term cardiac function, promote angiogenesis and reduce cardiac remodeling during the 3-month observation. Overall, this study presents a promising and effective system for preparing a large quantity of functional cardiospheres, showcasing potential for clinical application.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jupeng Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongxue Wu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Youling Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianlong Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianhua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Belanger K, Koppes AN, Koppes RA. Impact of Non-Muscle Cells on Excitation-Contraction Coupling in the Heart and the Importance of In Vitro Models. Adv Biol (Weinh) 2023; 7:e2200117. [PMID: 36216583 DOI: 10.1002/adbi.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/07/2022] [Indexed: 05/13/2023]
Abstract
Excitation-coupling (ECC) is paramount for coordinated contraction to maintain sufficient cardiac output. The study of ECC regulation has primarily been limited to cardiomyocytes (CMs), which conduct voltage waves via calcium fluxes from one cell to another, eliciting contraction of the atria followed by the ventricles. CMs rapidly transmit ionic flux via gap junction proteins, predominantly connexin 43. While the expression of connexin isoforms has been identified in each of the individual cell populations comprising the heart, the formation of gap junctions with nonmuscle cells (i.e., macrophages and Schwann cells) has gained new attention. Evaluating nonmuscle contributions to ECC in vivo or in situ remains difficult and necessitates the development of simple, yet biomimetic in vitro models to better understand and prevent physiological dysfunction. Standard 2D cell culture often consists of homogenous cell populations and lacks the dynamic mechanical environment of native tissue, confounding the phenotypic and proteomic makeup of these highly mechanosensitive cell populations in prolonged culture conditions. This review will highlight the recent developments and the importance of new microphysiological systems to better understand the complex regulation of ECC in cardiac tissue.
Collapse
Affiliation(s)
- Kirstie Belanger
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Abigail N Koppes
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Han YH, He XM, Lee SJ, Mao YY, Liu XC, Sun HN, Jin MH, Kwon T. Network analysis for the identification of hub genes and related molecules as potential biomarkers associated with the differentiation of bone marrow-derived stem cells into hepatocytes. Aging (Albany NY) 2022; 14:8243-8257. [PMID: 36279394 PMCID: PMC9648814 DOI: 10.18632/aging.204344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
The incidence of liver diseases has been increasing steadily. However, it has some shortcomings, such as high cost and organ donor scarcity. The application of stem cell research has brought new ideas for the treatment of liver diseases. Therefore, it is particularly important to clarify the molecular and regulatory mechanisms of differentiation of bone marrow-derived stem cells (BMSCs) into liver cells. Herein, we screened differentially expressed genes between hepatocytes and untreated BMSCs to identify the genes responsible for the differentiation of BMSCs into hepatocytes. GSE30419 gene microarray data of BMSCs and GSE72088 gene microarray data of primary hepatocytes were obtained from the Gene Expression Omnibus database. Transcriptome Analysis Console software showed that 1896 genes were upregulated and 2506 were downregulated in hepatocytes as compared with BMSCs. Hub genes were analyzed using the STRING and Cytoscape v 3.8.2, revealing that twenty-four hub genes, play a pivotal role in the differentiation of BMSCs into hepatocytes. The expression of the hub genes in the BMSCs and hepatocytes was verified by reverse transcription-quantitative PCR (RT-qPCR). Next, the target miRNAs of hub genes were predicted, and then the lncRNAs regulating miRNAs was discovered, thus forming the lncRNA-miRNA-mRNA interaction chain. The results indicate that the lncRNA-miRNA-mRNA interaction chain may play an important role in the differentiation of BMSCs into hepatocytes, which provides a new therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Xin-Mei He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-Si 56212, Jeonbuk, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ying-Ying Mao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Xuan-Chen Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56216, Jeonbuk, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Therapeutic Potential of Mesenchymal Stem Cells versus Omega n − 3 Polyunsaturated Fatty Acids on Gentamicin-Induced Cardiac Degeneration. Pharmaceutics 2022; 14:pharmaceutics14071322. [PMID: 35890218 PMCID: PMC9319609 DOI: 10.3390/pharmaceutics14071322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
This study compared the cardioprotective action of mesenchymal stem cells (MSCs) and PUFAs in a rat model of gentamicin (GM)-induced cardiac degeneration. Male Wistar albino rats were randomized into four groups of eight rats each: group I (control group), group II (gentamicin-treated rats receiving gentamicin intraperitoneally (IP) at dose of 100 mg/kg/day for 10 consecutive days), group III (gentamicin and PUFA group receiving gentamicin IP at dose of 100 mg/kg/day for 10 consecutive days followed by PUFAs at a dose of 100 mg/kg/day for 4 weeks), and group IV (gentamicin and MSC group receiving gentamicin IP at dose of 100 mg/kg/day followed by a single dose of MSCs (1 × 106)/rat IP). Cardiac histopathology was evaluated via light and electron microscopy. Immunohistochemical detection of proliferating cell nuclear antigen (PCNA), caspase-3 (apoptosis), Bcl2, and Bax expression was performed. Moreover, cardiac malonaldehyde (MDA) content, catalase activity, and oxidative stress parameters were biochemically evaluated. Light and electron microscopy showed that both MSCs and PUFAs had ameliorative effects. Their actions were mediated by upregulating PCNA expression, downregulating caspase-3 expression, mitigating cardiac MDA content, catalase activity, and oxidative stress parameters. MSCs and PUFAs had ameliorative effects against gentamicin-induced cardiac degeneration, with MSCs showing higher efficacy compared to PUFAs.
Collapse
|
8
|
Razavi Tousi SMT, Sharifi M, Naseroleslami M, Azizi Y, Aboutaleb N. Mesenchymal Stem Cells Derived from Human Amniotic Membrane Increase VEGF and Extenuate Fibrosis in Heart Failure Rats. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022; 46:781-791. [DOI: 10.1007/s40995-022-01307-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 05/02/2022] [Indexed: 01/03/2025]
|
9
|
Leveraging Extracellular Non-coding RNAs to Diagnose and Treat Heart Diseases. J Cardiovasc Transl Res 2022; 15:456-468. [PMID: 35419773 DOI: 10.1007/s12265-022-10252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, emerge to be crucial mediators of cell-to-cell communication in multiple organs. Non-coding RNAs loaded inside EVs contribute as one major mechanism for remote information transfer among different cell types or organs. Increasing evidence suggests that EV-associated non-coding RNAs derived from cardiovascular or non-cardiac cells regulate cardiovascular pathophysiology in heart development and diseases. The functional relevance of the EV-associated ncRNAs in heart diseases provides an avenue to develop novel diagnostic tools and therapies for heart diseases. In this review, we summarize the recent advancement of EV-associated ncRNAs in different cardiovascular diseases, including myocardial infarction, arrhythmias, cardiac hypertrophy, and heart failure, with an emphasis on the underlying molecular mechanisms.
Collapse
|
10
|
Wang Y, Sun X, Sun X. The Functions of LncRNA H19 in the Heart. Heart Lung Circ 2021; 31:341-349. [PMID: 34840062 DOI: 10.1016/j.hlc.2021.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Cardiovascular diseases (CVDs) are major causes of morbidity and mortality worldwide. Great effort has been put into exploring early diagnostic biomarkers and innovative therapeutic strategies for preventing CVD progression over the last two decades. Long non-coding RNAs (lncRNAs) have been identified as novel regulators in cardiac development and cardiac pathogenesis. For example, lncRNA H19 (H19), also known as a fetal gene abundant in adult heart and skeletal muscles and evolutionarily conserved in humans and mice, has a regulatory role in aortic aneurysm, myocardial hypertrophy, extracellular matrix reconstitution, and coronary artery diseases. Yet, the exact function of H19 in the heart remains unknown. This review summarises the functions of H19 in the heart and discusses the challenges and possible strategies of H19 research for cardiovascular disease.
Collapse
Affiliation(s)
- Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Sun
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Xu K, Lu C, Ren X, Wang J, Xu P, Zhang Y. Overexpression of HIF-1α enhances the protective effect of mitophagy on steroid-induced osteocytes apoptosis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2123-2137. [PMID: 34310007 DOI: 10.1002/tox.23327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoid (GC; dexamethasone, DEX) -induced osteonecrosis of the femoral head (GIOFH) is a challenging orthopedic disease, and its underlying mechanism remains not clear. This study exposed murine long bone osteocyte-Y4 (MLO-Y4) cells to DEX below normoxic or hypoxic circumstances and found that cell autophagy have been reduced. At the same time, flow cytometry analysis showed increased apoptosis, which was more pronounced in hypoxic environments. Recent research also claimed that GC induces osteoporosis after osteocyte apoptosis, and subsequent microfractures lead to ischemia and hypoxia of the femoral head, resulted in GIOFH. Presently, we found that both mitophagy-related protein hypoxia-inducible factor-1α (HIF-1α) and BNIP3 were up-regulated in the hypoxic environment, and their expression was down-regulated when exposed to DEX. Besides, we demonstrated that overexpressing HIF-1α resisted DEX-induced apoptosis in a hypoxic environment. Here, we demonstrated that overexpression of HIF-1α, through its downstream marker BNIP3, reduced the suppression of DEX on mitophagy induced by hypoxia and protected bone cells from apoptosis. Also, these findings may provide a direction of the promising application for better GIOFH treatment shortly.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Chao Lu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Ren
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Hou H, Adzika GK, Wu Q, Ma T, Ma Y, Geng J, Shi M, Fu L, Rizvi R, Gong Z, Sun H. Estrogen Attenuates Chronic Stress-Induced Cardiomyopathy by Adaptively Regulating Macrophage Polarizations via β 2-Adrenergic Receptor Modulation. Front Cell Dev Biol 2021; 9:737003. [PMID: 34650984 PMCID: PMC8506112 DOI: 10.3389/fcell.2021.737003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Clinical demographics have demonstrated that postmenopausal women are predisposed to chronic stress-induced cardiomyopathy (CSC) and this has been associated with the decrease of estrogen. Meanwhile, recent studies have implicated unsolved myocardial proinflammatory responses, which are characterized by enormous CD86+ macrophage infiltrations as an underlying disease mechanism expediting the pathological remodeling of the heart during chronic stress. However, we had previously demonstrated that estrogen confers cardioprotection via the modulation of cardiomyocytes β2-adrenoceptors (β2AR)-Gs/Gi pathways during stress to lessen the incidence of stress-induced cardiovascular diseases in premenopausal women. Intriguingly, macrophages express β2AR profoundly as well; as such, we sought to elucidate the possibilities of estrogen modulating β2AR-Gs/Gi pathway to confer cardioprotection during stress via immunomodulation. To do this, ovariectomy (OVX) and sham operations (Sham) were performed on female Sprague-Dawley (SD) rats. Two weeks after OVX, the rats were injected with 40 μg/kg/day of estradiol (E2). Next, on day 36 after OVX, chronic stress was induced by a daily subcutaneous injection of 5 mg/kg/day of isoproterenol (ISO). The effect of E2 on relevant clinical cardiac function indexes (LVSP, LVEDP, + dp/dt and −dp/dt), myocardial architecture (cardiomyocyte diameter and fibrosis), β2AR alterations, and macrophage (CD86+ and CD206+) infiltrations were assessed. In vitro, peritoneal macrophages (PMΦ) were isolated from wild-type and β2AR-knockout female mice. The PMΦ were treated with ISO, E2, and β2AR blocker ICI 118,551 for 24 h, and flow cytometric evaluations were done to assess their phenotypic expression. E2 deficiency permitted the induction of CSC, which was characterized by cardiac dysfunctions, maladaptive myocardial hypertrophy, unresolved proinflammatory responses, and fibrosis. Nonetheless, E2 presence/supplementation during stress averted all the aforementioned adverse effects of chronic stress while preventing excessive depletion of β2AR. Also, we demonstrated that E2 facilitates timely resolution of myocardial proinflammation to permit reparative functions by enhancing the polarization of CD86+ to CD206+ macrophages. However, this adaptive immunomodulation is hampered when β2AR is inhibited. Taken together, the outcomes of this study show that E2 confers cardioprotection to prevent CSC via adaptive immunomodulation of macrophage phenotypes, and β2AR-mediated signaling is crucial for the polarizations of CD86+ to CD206+ macrophages.
Collapse
Affiliation(s)
- Hongjian Hou
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,The College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Tongtong Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Yanhong Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Juan Geng
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | - Zheng Gong
- The School of Public Affairs and Governance, Silliman University, Dumaguete, Philippines
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
VEGF Contributes to Mesenchymal Stem Cell-Mediated Reversion of Nor1-Dependent Hypertrophy in iPS Cell-Derived Cardiomyocytes. Stem Cells Int 2021; 2021:8888575. [PMID: 33927770 PMCID: PMC8053052 DOI: 10.1155/2021/8888575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/19/2023] Open
Abstract
Myocardial hypertrophy is present in many heart diseases, representing a strong predictor of adverse cardiovascular outcomes. Regarding therapeutic intervention, mesenchymal stem cells (MSCs) have been suggested to significantly reduce cardiac hypertrophy and progression to heart failure. Preconditioning of MSCs was previously demonstrated to highly improve their paracrine activity resulting in modulation of immune responses and the progression of diseases. Here, we studied the effects of bone marrow-derived preconditioned MSCs on hypertrophied induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) and also sought to identify MSC-derived antihypertrophic molecules. Phenylephrine (PE) was used to induce hypertrophy in murine iPS-CM, and markers of hypertrophy were identified by microarray analysis. Murine MSCs were treated with IFN-γ and IL-1β to enhance their paracrine activity, and transcriptional profiling was performed by microarray analysis. Hypertrophied iPS-CM were subsequently cocultured with preconditioned MSCs or MSC-conditioned medium (CM), respectively. Effects on hypertrophied iPS-CM were studied by cell area quantification, real-time PCR, and western blot. In some experiments, cells were incubated with fractions of MSC-CM obtained by ultrafiltration or by MSC-CM supplemented with inhibitory antibodies. Intracellular and extracellular levels of vascular endothelial growth factor (VEGF) were evaluated by western blot and ELISA. PE-induced hypertrophy in iPS-CM was associated with an upregulation of neuron-derived orphan receptor (Nor1) expression, activation of Akt, and inhibition of both strongly prevented hypertrophy induction in iPS-CM. VEGF secreted by preconditioned MSCs provoked hypertrophy regression in iPS-CM, and a negative correlation between Nor1 expression and hypertrophic growth could be evidenced. Our results demonstrate that Nor1 expression strongly supports hypertrophy in iPS-CM. Moreover, the secretome of preconditioned MSCs triggered regression of hypertrophy in iPS-CM in a VEGF-dependent manner. We suggest that the delivery of the MSC-derived secretome may represent a therapeutic strategy to limit cardiac hypertrophy. However, additional in vivo studies are needed to prove this hypothesis.
Collapse
|
14
|
Liu Z, Naveed M, Baig MMFA, Mikrani R, Li C, Saeed M, Zhang Q, Farooq MA, Zubair HM, Xiaohui Z. Therapeutic approach for global myocardial injury using bone marrow-derived mesenchymal stem cells by cardiac support device in rats. Biomed Microdevices 2021; 23:5. [PMID: 33415464 DOI: 10.1007/s10544-020-00538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been considered a promising therapeutic approach to cardiovascular disease. This study intends to compare the effect of BMSCs through a standard active cardiac support device (ASD) and intravenous injection on global myocardial injury induced by isoproterenol. BMSCs were cultured in vitro, and the transplanted cells were labeled with a fluorescent dye CM-Dil. Isoproterenol (ISO) was injected into the rats; 2 weeks later, the labeled cells were transplanted into ISO-induced heart-jury rats through the tail vein or ASD device for 5 days. The rats were sacrificed on the first day, the third day, and the fifth day after transplantation to observe the distribution of cells in the myocardium by fluorescence microscopy. The hemodynamic indexes of the left ventricle were measured before sacrificing. H&E staining and Masson's trichrome staining were used to evaluate the cardiac histopathology. In the ASD groups, after 3 days of transplantation, there were a large number of BMSCs on the epicardial surface, and after 5 days of transplantation, BMSCs were widely distributed in the ventricular muscle. But in the intravenous injection group, there were no labeled-BMSCs distributed. In the ASD + BMSCs-three days treated group and ASD + BMSCs -five days-treated group, left ventricular systolic pressure (LVSP), the maximum rate of left ventricular pressure rise (+dP/dt), the maximum rate of left ventricular pressure decline (-dP/dt) increased compared with model group and intravenous injection group (P < 0.05). By giving BMSCs through ASD device, cells can rapidly and widely distribute in the myocardium and significantly improve heart function.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China.,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | | | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China. .,Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 2110017, People's Republic of China. .,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, Jiangsu Province, 210017, People's Republic of China.
| |
Collapse
|
15
|
Qiu J, Xiao H, Zhou S, Du W, Mu X, Shi G, Tan X. Bone marrow mesenchymal stem cells inhibit cardiac hypertrophy by enhancing FoxO1 transcription. Cell Biol Int 2021; 45:188-197. [PMID: 33049085 DOI: 10.1002/cbin.11482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have therapeutic potential for certain heart diseases. Previous studies have shown that stem cells inhibit cardiac hypertrophy; however, it is necessary to explore the mechanisms underlying this effect. This study aimed to investigate the possible mechanism underlying the inhibitory effect of BMSCs on cardiomyocyte hypertrophy. We induced cardiomyocyte hypertrophy in cultured rat cells through isoproterenol (ISO) treatment with or without BMSC coculture. A microarray was performed to analyze messenger RNA expression in response to ISO treatment and BMSC coculture. Pathway enrichment analysis showed that the expression of differential genes was closely related to the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and that the expression of forkhead box O 1 (FoxO1) was significantly increased in the presence of BMSCs. Furthermore, we determined the expression levels of p-AMPK/AMPK and p-FoxO1/FoxO1 by western blot analysis. The expression of p-AMPK/AMPK was upregulated, whereas that of p-FoxO1/FoxO1 was downregulated upon coculturing with BMSCs. The AMPK-specific antagonist Compound C inhibited the downregulation of p-FoxO1/FoxO1 induced by the BMSC coculture. Furthermore, treatment with the specific FoxO1 antagonist AS1842856 reduced the inhibitory effects of BMSCs on cardiomyocyte hypertrophy in vivo and in vitro. Our present study demonstrates the inhibition of cardiomyocyte hypertrophy by BMSCs, which occurs partly through the AMPK-FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Jiantao Qiu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huaiteng Xiao
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shunchang Zhou
- Department of General Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Weimin Du
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiang Mu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueying Tan
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Chen F, Li X, Zhao J, Geng J, Xie J, Xu B. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling. In Vitro Cell Dev Biol Anim 2020; 56:567-576. [PMID: 32748023 DOI: 10.1007/s11626-020-00481-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
The multiple therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) have been verified in ischemic and reperfusion diseases. Exosomes are thought to play vital roles in MSCs-related cardioprotective effects. Recently, more and more evidences indicated that apoptosis and fibrosis were crucial pathological mechanisms in cardiac remodeling. Whether MSCs-derived exosomes could regulate cardiac hypertrophy and remodeling need to be explored. Murine BM-MSCs-derived exosomes were isolated by differential gradient centrifugation method. The transverse aortic constriction (TAC) mice model was established to promote cardiac remodeling. Cardiac function and remodeling were assessed via echocardiography and histology analysis. Myocytes apoptosis was determined by TUNEL fluorescence staining. Meanwhile, premature senescence was detected by β-galactosidase (SA-β-gal) staining. Related proteins and mRNA alternation were assessed via western blotting and quantitative reverse transcription polymerase chain reaction, respectively. MSCs-derived exosomes significantly protected myocardium against cardiac hypertrophy, attenuated myocardial apoptosis, and fibrosis and preserved heart function when pressure overload. In cultured myocytes, MSCs-derived exosomes also prevented cell hypertrophy stimulated with angiotensin II. One the other hand, exosomes promoted premature senescence of myofibroblasts vitro, indicating its anti-fibrosis effect in cardiac remodeling. Exosomes protected cardiomyocytes against pathological hypertrophy. It may provide a promising future treatment for heart failure.
Collapse
Affiliation(s)
- Fu Chen
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University , Nanjing, 210008, China
| | - Xueling Li
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University , Nanjing, 210008, China
| | - Jinxuan Zhao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University , Nanjing, 210008, China
| | - Jin Geng
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University , Nanjing, 210008, China.
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University , Nanjing, 210008, China.
| |
Collapse
|
17
|
Liu Z, Mikrani R, Zubair HM, Taleb A, Naveed M, Baig MMFA, Zhang Q, Li C, Habib M, Cui X, Sembatya KR, Lei H, Zhou X. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. Eur J Pharmacol 2020; 876:173049. [PMID: 32142771 DOI: 10.1016/j.ejphar.2020.173049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
In the beginning stage of heart disease, the blockage of blood flow frequently occurs due to the persistent damage and even death of myocardium. Cicatricial tissue developed after the death of myocardium can affect heart function, which ultimately leads to heart failure. In recent years, several studies carried out about the use of stem cells such as embryonic, pluripotent, cardiac and bone marrow-derived stem cells as well as myoblasts to repair injured myocardium. Current studies focus more on finding appropriate measures to enhance cell homing and survival in order to increase paracrine function. Until now, there is no universal delivery route for mesenchymal stem cells (MSCs) for different diseases. In this review, we summarize the advantages and challenges of the systemic and local pathways of MSC delivery. In addition, we also describe some advanced measures of cell delivery to improve the efficiency of transplantation. The combination of cells and therapeutic substances could be the most reliable method, which allows donor cells to deliver sufficient amounts of paracrine factors and provide long-lasting effects. The cardiac support devices or tissue engineering techniques have the potential to facilitate the controlled release of stem cells on local tissue for a sustained period. A novel promising epicardial drug delivery system is highlighted here, which not only provides MSCs with a favorable environment to promote retention but also increases the contact area and a number of cells recruited in the heart muscle.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | | | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Mirza Muhammad Faran Asraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Murad Habib
- Department of Surgery, Ayub Teaching Hospital, Abbottabad, Pakistan
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Han Lei
- Department of Pharmacy, Jiangsu Worker Medical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210017, PR China.
| |
Collapse
|
18
|
Liufu R, Shi G, He X, Lv J, Liu W, Zhu F, Wen C, Zhu Z, Chen H. The therapeutic impact of human neonatal BMSC in a right ventricular pressure overload model in mice. Stem Cell Res Ther 2020; 11:96. [PMID: 32122393 PMCID: PMC7052971 DOI: 10.1186/s13287-020-01593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the impact of donor age on the therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSCs) in treating adverse remodeling as the result of right ventricle (RV) pressure overload. Methods BMSCs were isolated from neonatal (< 1 month), infant (1 month to 1 year), and young children (1 year to 5 years) and were compared in their migration potential, surface marker expression, VEGF secretion, and matrix metalloprotein (MMP) 9 expression. Four-week-old male C57 mice underwent pulmonary artery banding and randomized to treatment and untreated control groups. During the surgery, BMSCs were administered to the mice by intramyocardial injection into the RV free wall. Four weeks later, RV function and tissue were analyzed by echocardiography, histology, and quantitative real-time polymerase chain reaction. Results Human neonatal BMSCs demonstrated the greatest migration capacity and secretion of vascular endothelial growth factor but no difference in expression of surface markers. Neonate BMSCs administration resulted in increasing expression of VEGF, a significant reduction in RV wall thickness, and internal diameter in mice after PA banding. These beneficial effects were probably associated with paracrine secretion as no cardiomyocyte transdifferentiation was observed. Conclusions Human BMSCs from different age groups have different characteristics, and the youngest BMSCs may favorably impact the application of stem cell-based therapy to alleviate adverse RV remodeling induced by pressure overload.
Collapse
Affiliation(s)
- Rong Liufu
- Cardiovascular Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Jingjing Lv
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Wei Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Fang Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Chen Wen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| |
Collapse
|
19
|
Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal Stem Cells Beyond Regenerative Medicine. Front Cell Dev Biol 2020; 8:72. [PMID: 32133358 PMCID: PMC7040370 DOI: 10.3389/fcell.2020.00072] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their therapeutic impact on tissue degeneration and immune-based pathologies. Additionally, their homing and immunomodulatory properties can be exploited in cancer malignancies to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their distinct multiple therapeutic utilities and successes/challenges thereof in both animal studies and clinical trials. We further highlight the promising potential of MSCs not only in cancer management but also in instigating tumor-specific immunity - i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the clinical advancement of MSC-based cancer vaccines to assist in contriving novel methodologies from which a therapeutic milestone might emanate.
Collapse
Affiliation(s)
- Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada.,IntelliStem Technologies Inc., Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
20
|
Downregulation of MicroRNA-206 Alleviates the Sublethal Oxidative Stress-Induced Premature Senescence and Dysfunction in Mesenchymal Stem Cells via Targeting Alpl. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7242836. [PMID: 32148656 PMCID: PMC7042556 DOI: 10.1155/2020/7242836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have shown great promise in tissue engineering and regenerative medicine; however, the regenerative capacity of senescent MSCs is greatly reduced, thus exhibiting limited therapy potential. Previous studies uncovered that microRNA-206 (miR-206) could largely regulate cell functions, including cell proliferation, survival, and apoptosis, but whether miR-206 is involved in the senescent process of MSCs remains unknown. In this study, we mainly elucidated the effects of miR-206 on MSC senescence and the underlying mechanism. We discovered that miR-206 was upregulated in the senescent MSCs induced by H2O2, and abrogation of miR-206 could alleviate this tendency. Besides, we determined that by targeting Alpl, miR-206 could ameliorate the impaired migration and paracrine function in MSCs reduced by H2O2. In vivo study, we revealed that inhibition of miR-206 in senescent MSCs could effectively protect their potential for myocardial infarction treatment in a rat MI model. In summary, we examined that inhibition of miR-206 in MSCs can alleviate H2O2-induced senescence and dysfunction, thus protecting its therapeutic potential.
Collapse
|
21
|
Tu Y, Qiu Y, Liu L, Huang T, Tang H, Liu Y, Guo W, Jiang H, Fan Y, Yu B. mi R -15a/15b Cluster Modulates Survival of Mesenchymal Stem Cells to Improve Its Therapeutic Efficacy of Myocardial Infarction. J Am Heart Assoc 2020; 8:e010157. [PMID: 30616426 PMCID: PMC6405735 DOI: 10.1161/jaha.118.010157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The poor viability of transplanted mesenchymal stem cells (MSCs) hampers their therapeutic efficacy for ischemic heart disease. MicroRNAs are involved in regulation of MSC survival and function. The present study was designed to investigate the molecular effects of miR‐15a/15b on MSC survival, focusing on the role of vascular endothelial growth factor receptor 2. Methods and Results We first harvested donor luc(Luciferase)‐MSCs (5×105) isolated from the luciferase transgenic mice with FVB background. Luc‐MSCs were transfected with miR‐15a/15b mimics or inhibitors and cultured under oxygen glucose deprivation condition for 12 hours to mimics the harsh microenvironment in infarcted heart; they were subjected to MTT (3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide?Thiazolyl Blue Tetrazolium Bromide) assay, bioluminescence imaging, quantitative reverse transcription–polymerase chain reaction, transferase‐mediated deoxyuridine triphosphate–digoxigenin nick‐end labeling assay, and flow cytometry. Furthermore, the levels of vascular endothelial growth factor receptor 2, protein kinase B, p(Phosphorylate)‐protein kinase B, Bcl‐2, Bax, and caspase‐3 proteins were available by Western blotting assay. In vivo, acute myocardial infarction was induced in 24 mice by coronary ligation, with subsequent receipt of Luc‐MSCs, Luc‐MSCs+miR‐15a/15b inhibitors, or PBS treatment. The therapeutic procedure and treatment effects were tracked and assessed using bioluminescence imaging and echocardiographic measurement. Next, ex vivo imaging and immunohistochemistry were conducted to verify the distribution of MSCs. We demonstrated that miR‐15a/15b targeted vascular endothelial growth factor receptor 2 to modulate MSC survival, possibly via phosphatidylinositol 3‐kinase/protein kinase B signaling pathway, which was proved by bioluminescence imaging, immunohistochemistry analysis, and echocardiographic measurement. Conclusions Luc‐MSCs could be followed dynamically in vitro and in vivo by bioluminescence imaging, and the role of miR‐15a/b could be inferred from the loss of signals from luc‐MSCs. This finding may have practical clinical implications in miR‐15a/15b–modified MSC transplantation in treating myocardial infarction.
Collapse
Affiliation(s)
- Yingfeng Tu
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China.,2 The Key Laboratory of Myocardial Ischemia Chinese Ministry of Education Harbin Heilongjiang China
| | - Yan Qiu
- 3 Department of Geriatrics Huadong sanatorium Wuxi City Jiangsu Province China
| | - Li Liu
- 4 Department of Anesthesiology The Third Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Tao Huang
- 5 Department of Radiology The Fourth Hospital of Harbin Medical University Harbin China
| | - Hao Tang
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China
| | - Youbin Liu
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China.,2 The Key Laboratory of Myocardial Ischemia Chinese Ministry of Education Harbin Heilongjiang China
| | - Wenguang Guo
- 7 College of Basic Medical Science Harbin Medical University-Daqing Daqing China
| | - Hongchi Jiang
- 8 Key Laboratory of Hepatosplenic Surgery Department of General Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Yuhua Fan
- 6 College of Pharmacy Harbin Medical University-Daqing Daqing China
| | - Bo Yu
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China.,2 The Key Laboratory of Myocardial Ischemia Chinese Ministry of Education Harbin Heilongjiang China
| |
Collapse
|
22
|
Curcumin Improves the Efficacy of BMSCs in Myocardial Ischemia Injury in Rat. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.86592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Elbaz EM, Helmy HS, El-Sahar AE, Saad MA, Sayed RH. Lercanidipine boosts the efficacy of mesenchymal stem cell therapy in 3-NP-induced Huntington's disease model rats via modulation of the calcium/calcineurin/NFATc4 and Wnt/β-catenin signalling pathways. Neurochem Int 2019; 131:104548. [PMID: 31539560 DOI: 10.1016/j.neuint.2019.104548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
Abstract
3-Nitropropionic acid (3-NP) induces a spectrum of Huntington's disease (HD)-like neuropathologies in the rat striatum. The present study aimed to demonstrate the neuroprotective effect of lercanidipine (LER) in rats with 3-NP-induced neurotoxicity, address the possible additional protective effect of combined treatment with bone marrow-derived mesenchymal stem cells (BM-MSCs) and LER, and investigate the possible involvement of the Ca2+/calcineurin (CaN)/nuclear factor of activated T cells c4 (NFATc4) and Wnt/β-catenin signalling pathways. Rats were injected with 3-NP (10 mg/kg/day, i.p.) for two weeks and were divided into four subgroups; the first served as the control HD group, the second received a daily dose of LER (0.5 mg/kg, i.p.), the third received a single injection of BM-MSCs (1 x 106/rat, i.v.) and the last received a combination of both BM-MSCs and LER. The combined therapy improved motor and behaviour performance. Meanwhile, this treatment led to a marked reduction in striatal cytosolic Ca2+, CaN, tumour necrosis factor-alpha, and NFATc4 expression and the Bax/Bcl2 ratio. Combined therapy also increased striatal brain-derived neurotrophic factor, FOXP3, Wnt, and β-catenin protein expression. Furthermore, haematoxylin-eosin and Nissl staining revealed an amelioration of striatum tissue injury with the combined treatment. In conclusion, the current study provides evidence for a neuroprotective effect of LER and/or BM-MSCs in 3-NP-induced neurotoxicity in rats. Interestingly, combined LER/BM-MSC therapy was superior to cell therapy alone in inhibiting 3-NP-induced neurological insults via modulation of the Ca2+/CaN/NFATc4 and Wnt/β-catenin signalling pathways. LER/BM-MSC combined therapy may represent a feasible approach for improving the beneficial effects of stem cell therapy in HD.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatullah S Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
24
|
Li Y, Feng C, Gao M, Jin M, Liu T, Yuan Y, Yan G, Gong R, Sun Y, He M, Fu Y, Zhang L, Huang Q, Ding F, Ma W, Bi Z, Xu C, Sukhareva N, Bamba D, Reiters R, Yang F, Cai B, Yang L. MicroRNA-92b-5p modulates melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells by targeting ICAM-1. J Cell Mol Med 2019; 23:6140-6153. [PMID: 31304676 PMCID: PMC6714169 DOI: 10.1111/jcmm.14490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao Feng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Manqi Gao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mengyu Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tianyi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui Gong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Sun
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyu He
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yutuo Fu
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Natalia Sukhareva
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Djibril Bamba
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Russel Reiters
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Fan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Arsenic trioxide blocked proliferation and cardiomyocyte differentiation of human induced pluripotent stem cells: Implication in cardiac developmental toxicity. Toxicol Lett 2019; 309:51-58. [DOI: 10.1016/j.toxlet.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/29/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
|
26
|
Schmuck EG, Hacker TA, Schreier DA, Chesler NC, Wang Z. Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 316:H1005-H1013. [PMID: 30822119 DOI: 10.1152/ajpheart.00091.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Right ventricular failure (RVF) is a common cause of death in patients suffering from pulmonary arterial hypertension (PAH). The current treatment for PAH only moderately improves symptoms, and RVF ultimately occurs. Therefore, it is necessary to develop new treatment strategies to protect against right ventricle (RV) maladaptation despite PAH progression. In this study, we hypothesize that local mesenchymal stem cell (MSC) delivery via a novel bioscaffold can improve RV function despite persistent PAH. To test our hypothesis, we induced PAH in adult rats with SU5416 and chronic hypoxia exposure; treated with rat MSCs delivered by intravenous injection, intramyocardial injection, or epicardial placement of a bioscaffold; and then examined treatment effectiveness by in vivo pressure-volume measurement, echocardiography, histology, and immunohistochemistry. Our results showed that compared with other treatment groups, only the MSC-seeded bioscaffold group resulted in RV functional improvement, including restored stroke volume, cardiac output, and improved stroke work. Diastolic function indicated by end-diastolic pressure-volume relationship was improved by the local MSC treatments or bioscaffold alone. Cardiomyocyte hypertrophy and RV fibrosis were both reduced, and von Willebrand factor expression was restored by the MSC-seeded bioscaffold treatment. Overall, our study suggests a potential new regenerative therapy to rescue the pressure-overload failing RV with persistent pulmonary vascular disease, which may improve quality of life and/or survival of PAH patients. NEW & NOTEWORTHY We explored the effects of mesenchymal stem cell-seeded bioscaffold on right ventricles (RVs) of rats with established pulmonary arterial hypertension (PAH). Some beneficial effects were observed despite persistent PAH, suggesting that this may be a new therapy for RV to improve quality of life and/or survival of PAH patients.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, University of Wisconsin , Madison, Wisconsin
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin , Madison, Wisconsin
| | - David A Schreier
- Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin
| | - Naomi C Chesler
- Department of Medicine, University of Wisconsin , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin
| | - Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin.,Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
27
|
Yang Y, Li S, Jin ZR, Jing HB, Zhao HY, Liu BH, Liang YJ, Liu LY, Cai J, Wan Y, Xing GG. Decreased abundance of TRESK two-pore domain potassium channels in sensory neurons underlies the pain associated with bone metastasis. Sci Signal 2018; 11. [DOI: 10.1126/scisignal.aao5150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Bone metastasis–associated VEGF suppresses neuronal K
+
channels and increases pain in rats.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Hong-Yan Zhao
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Bo-Heng Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Ya-Jing Liang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
- Second Affiliated Hospital of Xinxiang Medical University, Henan, China
| |
Collapse
|
28
|
Jin C, Tian H, Li J, Jia S, Li S, Xu GT, Xu L, Lu L. Stem cell education for medical students at Tongji University: Primary cell culture and directional differentiation of rat bone marrow mesenchymal stem cells. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:151-154. [PMID: 29274248 DOI: 10.1002/bmb.21098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Stem cells are cells that can self-renew and differentiate into a variety of cell types under certain conditions. Stem cells have great potential in regenerative medicine and cell therapy for the treatment of certain diseases. To deliver knowledge about this frontier in science and technology to medical undergraduate students, we designed an innovative practical experiment for freshmen in their second semester. The lab exercise focused on rat bone marrow mesenchymal stem cell (BMSC) isolation, cell culture and differentiation, and it aimed to help students master the aseptic techniques for cell culture, the basic methods and procedures for the primary culture and passage of BMSCs, the basic procedure for the directional differentiation of BMSCs into adipocytes and their subsequent identification by oil-red-O staining. This lab exercise is a very meaningful and useful introduction to stem cell collection and manipulation and inspires medical students to deepen their understanding of translational medicine and regenerative medicine. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):151-154, 2018.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Song Jia
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lei Xu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Wang X, Gao JL, Zhao MM, Zhu HX, Tian YX, Li R, Jiang XH, Yu L, Tian JR, Cui JZ. Therapeutic effects of conditioned medium from bone marrow-derived mesenchymal stem cells on epithelial-mesenchymal transition in A549 cells. Int J Mol Med 2017; 41:659-668. [PMID: 29207055 PMCID: PMC5752235 DOI: 10.3892/ijmm.2017.3284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease. The transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis. Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to be a modulator of the molecular aspects of the fibrosis pathway. However, it is still unknown as to whether the conditioned medium from BMSCs (BMSCs-CM) inhibits the epithelial-mesenchymal transition (EMT) process. This study confirmed the hypothesis that BMSCs-CM exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549) by suppressing the phosphorylation of Smad3. We used the A549 cells in vitro to detect morphological evidence of EMT by phase-contrast microscopy. These cells were randomly divided into 4 groups as follows: the control group, the TGF-β1 group, the SIS3 (specific inhibitor of Smad3) group and the BMSCs-CM group. The immunofluorescence method was used to determined the location of E-cadherin (E-calcium mucins; E-cad), α-smooth muscle actin (α-SMA) and p-Smad3. The expression levels of E-cad, CK8, α-SMA, vimentin, p-Smad3, Snail1, collagen I (COLI) and collagen III (COLIII) were detected by western blot analysis. Following exposure to TGF-β1, the A549 cells displayed a spindle-shaped fibroblast-like morphology. In accordance with these morphological changes, the expression levels of E-cad and CK8 were downregulated, while the expression levels of α-SMA and vimentin were upregulated. Along with this process, the expression levels of p-Smad3, Snail1, COLI and COLIII were increased. However, the cells in the BMSCs-CM group and SIS3 group exhibited a decrease in the levels of α-SMA and vimentin (which had been upregulated by TGF-β1), and an increase in the levels of E-cad and CK8 expression (which had been downregulated by TGF-β1). On the whole, these results indicated that BMSCs-CM suppressed the EMT which might be associated with TGF-β1/Smad3. This study provides the theoretical basis for the research of the mechanisms responsible for pulmonary disease.
Collapse
Affiliation(s)
- Xin Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jun-Ling Gao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Man-Man Zhao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hui-Xing Zhu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yan-Xia Tian
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ran Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xiao-Hua Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Lei Yu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jing-Rui Tian
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jian-Zhong Cui
- Department of Neurosurgery, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
30
|
Yang F, Yang L, Li Y, Yan G, Feng C, Liu T, Gong R, Yuan Y, Wang N, Idiiatullina E, Bikkuzin T, Pavlov V, Li Y, Dong C, Wang D, Cao Y, Han Z, Zhang L, Huang Q, Ding F, Bi Z, Cai B. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. J Pineal Res 2017; 63. [PMID: 28500782 DOI: 10.1111/jpi.12422] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Li
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Gege Yan
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Chao Feng
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Tianyi Liu
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Rui Gong
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Ye Yuan
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ning Wang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Elina Idiiatullina
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Timur Bikkuzin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Yang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin Medical University, Harbin, China
| | - Chaorun Dong
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Dawei Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenbo Han
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Lai Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Qi Huang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Fengzhi Ding
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Zhengang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Institute of Clinical Pharmacy, Heilongjiang Academy of Medical Sciences, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
31
|
Wu SZ, Li YL, Huang W, Cai WF, Liang J, Paul C, Jiang L, Wu ZC, Xu M, Zhu P, Wang Y. Paracrine effect of CXCR4-overexpressing mesenchymal stem cells on ischemic heart injury. Cell Biochem Funct 2017; 35:113-123. [PMID: 28233339 DOI: 10.1002/cbf.3254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
It has been reported that CXCR4-overexpressing mesenchymal stem cells (MSCCX4 ) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4-derived paracrine cardio-protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4 , and CXCR4 gene-specific siRNA-transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs-conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation-regulating genes were assessed by real-time polymerase chain reaction (RT-PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium-treated group than control group, while this proproliferative effect was reduced in CXCR4 gene-specific siRNA-transduced MSC-treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor-β2 was observed in hypoxia-exposed MSCCX4 . In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.
Collapse
Affiliation(s)
- Shi-Zheng Wu
- Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ying-Lan Li
- Qinghai Provincial People's Hospital, Xining, Qinghai, China.,Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, Qinghai, China.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Wen-Feng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Zhi-Chao Wu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou, China.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou, China
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases. Stem Cells Int 2016; 2016:4285938. [PMID: 27829839 PMCID: PMC5088322 DOI: 10.1155/2016/4285938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023] Open
Abstract
Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However, the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation of microRNA- (miRNA-) overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-based therapy for the treatment of CVDs and the potential for cell-free based therapy.
Collapse
|
33
|
Cai B, Ma W, Bi C, Yang F, Zhang L, Han Z, Huang Q, Ding F, Li Y, Yan G, Pan Z, Yang B, Lu Y. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J Pineal Res 2016; 61:82-95. [PMID: 27062045 DOI: 10.1111/jpi.12331] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
Melatonin, a hormone secreted by the pineal gland, possesses multiple biological activities such as antitumor, antioxidant, and anti-ischemia. C-kit(+) cardiac progenitor cells (CPCs) have emerged as a promising tool for the treatment of heart diseases. However, the senescence of CPCs due to pathological stimuli leads to the decline of CPCs' functions and regenerative potential. This study was conducted to demonstrate whether melatonin antagonizes the senescence of CPCs in response to oxidative stress. Here, we found that the melatonin treatment markedly inhibited the senescent characteristics of CPCs after exposed to sublethal concentration of H2 O2 , including the increase in senescence-associated β-galactosidase (SA-β-gal)-positive CPCs, senescence-associated heterochromatin loci (SAHF), secretory IL-6 level, and the upregulation of p53 and p21 proteins. Senescence-associated proliferation reduction was also attenuated by melatonin in CPCs. Luzindole, the melatonin membrane receptor blocker, may block the melatonin-mediated suppression of premature senescence in CPCs. Interestingly, we found that long noncoding RNA H19 and its derived miR-675 were downregulated by H2 O2 in CPCs, but melatonin treatment could counter this alteration. Furthermore, knockdown of H19 or miR-675 blocked antisenescence actions of melatonin on H2 O2 -treated CPCs. It was further verified that H19-derived miR-675 targeted at the 3'UTR of USP10, which resulted in the downregulation of p53 and p21 proteins. In summary, melatonin antagonized premature senescence of CPCs via H19/miR-675/USP10 pathway, which provides new insights into pharmacological actions and potential applications of melatonin on the senescence of CPCs.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Chongwei Bi
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zhenbo Han
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Yuan Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic., Australia
| | - Yanjie Lu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|