Nakamura Y, Kangai Y, Abe T, Nakahara Y. [Improvement of Standardized Uptake Value Accuracy in the
99mTc Body SPECT and SPECT/CT: Optimization of the Phantom for Calculating Becquerel Calibration Factor and Correction Method].
Nihon Hoshasen Gijutsu Gakkai Zasshi 2021;
77:921-931. [PMID:
34544916 DOI:
10.6009/jjrt.2021_jsrt_77.9.921]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE
The purpose of this study was to evaluate the best phantom for calculating the becquerel calibration factor (BCF) and correction method to obtain the improvement of standardized uptake value (SUV) accuracy in both single photon emission computed tomography (SPECT) and SPECT/CT.
METHOD
A SPECT/CT scanner was used in this study. BCFs were calculated using four phantoms with different cross sections including National Electrical Manufacturers Association International Electrotechnical Commission body phantom (NEMA IEC body phantom) filled with 99mTcO4-, and five correction methods were used for reconstruction. SUVs were calculated by the NEMA IEC body phantom and pediatric phantom in house with these BCFs. We then measured SUVmean in the background region of the NEMA IEC body phantom, SUVmax and SUVpeak of the 37-mm-diameter sphere.
RESULTS
In the SPECT scanner, SUVmean and SUVmax measured 1.04 and 4.02, respectively, in the case of BCF calculation and SUV measurement using NEMA IEC body phantoms without corrections. In the SPECT/CT scanner, SUVmean with CT attenuation correction (AC) was in agreement with the theoretical values using each phantom. SUVmax showed the same trend.
CONCLUSION
In the SPECT scanner, it is possible to obtain a highly accurate SUV by using a phantom that matches the size of the subject for BCF calculation and without correction. In the SPECT/CT scanner, highly accurate SUVs can be obtained by using CT-based attenuation correction, and these values do not depend on the size of the BCF calculation phantom.
Collapse