1
|
Liu Y, Ji Y, Li J, Liu X, Wang C, Zhang H, Tian R. An Unexpected Access to Phospholene Fused β-Phosphinolactams by the Reaction of α-C 2-Bridged Biphospholes and Nitrones. Org Lett 2024; 26:8747-8751. [PMID: 39378233 DOI: 10.1021/acs.orglett.4c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An efficient and practical method for the preparation of the phospholene fused β-phosphinolactam skeleton from α-C2-bridged biphospholes and nitrones is described. The dissociation of biphospholes generates transient 1-phosphafulvenes, followed by oxidation with nitrones to give the 1-phosphafulvene oxides. The oxidation of 1-phosphafulvene boosts its reactivity toward imine, leading to the isolated products.
Collapse
Affiliation(s)
- Yanjie Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yu Ji
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiawei Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Xiaobing Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Chunjie Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Rongqiang Tian
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Bhowmick T, Orthaber A. Main Group Pentafulvenes: Challenges and Opportunities in Heavy Main Group Isolobal Substitution of Pentafulvene. Chemphyschem 2024; 25:e202300940. [PMID: 38709950 DOI: 10.1002/cphc.202300940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Heterofulvenes based on isolobal substitution of carbon fragments by (heavier) main group motifs provide a rich source of structurally interesting building blocks with electronic situations that can vastly differ from all-carbon congeners. Group 13, heavier 14 & 16 fulvenes are rare and pose significant stability challenges, while group 15 derivatives, particularly phosphorus and arsenic, have led to many derivatives with intriguing opto-electronic properties.
Collapse
Affiliation(s)
- Toma Bhowmick
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| |
Collapse
|
3
|
Liu Y, Fan X, Tian R, Duan Z. FeCl 2 Catalyzed Three-Component Reactions of Phospholes, Pyrrolidine, and Ketones (Aldehydes): Chemoselective Synthesis of 1-Phosphafulvenes. Org Lett 2021; 23:2943-2947. [PMID: 33779177 DOI: 10.1021/acs.orglett.1c00602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed an unprecedented approach for the synthesis of transient 1-phosphafulvenes through three component reactions of phospholes. The generation of 1-phosphafulvenes was demonstrated by in situ [6 + 4] cycloaddition with 2H-phospholes and [6 + 6] self-dimerization. The [6 + 4] and [6 + 6] reaction pathway could be modulated by the starting ketones and aldehydes. The construction of 1-phosphafulvenes is illustrated by a proposed mechanism combining nucleophilic addition of phospholide to the iminium or isomerized azomethine ylide and a [1,5]-shift of phosphole.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinran Fan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
Liu Y, Tian R, Duan Z, Mathey F. Nonbenzenoid aromaticity of 1-phosphafulvenes: synthesis of phosphacymantrenes. Dalton Trans 2021; 50:476-479. [PMID: 33355316 DOI: 10.1039/d0dt03934a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination chemistry of 1-phosphafulvenes was investigated by employing their [6 + 4] adducts or α-C2-bridged biphospholes as a precursor. Unbridged phosphacymantrenes arise from 1-phosphafulvenes via proton abstraction. α-C2-bridged biphosphacymantrenes are probably yielded by the reductive coupling of 1-phosphafulvene with Mn2(CO)10. The coordination behavior of 1-phosphafulvenes is comparable to that of pentafulvenes, which again demonstrates the phosphorus-carbon analogy in low-coordinate organophosphorus chemistry.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450002, China.
| |
Collapse
|
5
|
Liu Y, Zhang K, Tian R, Duan Z, Mathey F. 1,1-Addition of α-C 2-Bridged Biphospholes with Alkynes. Org Lett 2020; 22:6972-6976. [PMID: 32846086 DOI: 10.1021/acs.orglett.0c02521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unusual chemoselective 1,1-addition of α-C2-bridged biphospholes to terminal alkynes is reported. The developed protocol provides simple access to the unknown 1,3-diphosphepines, which has potential applications in the coordination and catalyst chemistry. Their Pd and Mo complexes were studied by single-crystal X-ray diffraction analysis. This method features excellent chemoselectivity, high step and atom economy, mild reaction conditions, and wide substrate scope.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Keke Zhang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|