1
|
Huang J, Jiang B, Zhang X, Gao Y, Xu X, Miao Z. Triethyamine‐promoted [5+3] Cycloadditions for Regio‐ and Diastereoselective Synthesis of Functionalized aza‐Bicyclo[3.3.1]alkenones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Zhiwei Miao
- Institute of Elemento-Organic Chemistry CHINA
| |
Collapse
|
2
|
GaCl3 catalyzed the cascade Michael/ketalization of o-hydroxychalcones with indoline-2-thiones: For the construction of indole-annulated 2-oxa-8-thiabicyclo[3.3.1]nonane derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Gao Q, Jing Q, Chen Y, Sun J, Zhou M. Decarboxylative Amidation of Acrylamides with Oxamic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Yucheng Y, Lijing L, Xiaolong L, Yan Y, Tian C, Qunli L. One-Pot Synthesis of 1,4-Bridged Dihydroisoquinoline-3-ones from Isoquinolinium Salts and Cyclic 1,3-Diketones. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22090408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Yadav J, Dolas AJ, Iype E, Rangan K, Ohshita J, Kumar D, Kumar I. Asymmetric Synthesis of Bridged N-Heterocycles with Tertiary Carbon Center through Barbas Dienamine-Catalysis: Scope and Applications. J Org Chem 2021; 86:17213-17225. [PMID: 34743517 DOI: 10.1021/acs.joc.1c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct aza-Diels-Alder reaction between 2-aryl-3H-indolin-3-ones and cyclic-enones has been developed to access chiral indolin-3-one fused polycyclic bridged compounds. This method proceeds via proline-catalyzed Barbas-dienamine intermediate formation from various cyclic-enones such as 2-cyclopenten-1-one, 2-cyclohexene-1-one, and 2-cycloheptene-1-one, followed by a reaction with 2-aryl-3H-indol-3-ones. Several indolin-3-ones fusing [2.2.2], [2.2.1], and [3.2.1] skeletons decorated with a tertiary carbon chiral center have been prepared. Computational studies (DFT) supported the observed stereoselectivity in the method. The synthesized compounds have shown exciting photophysical activities and selective sensing of Pd2+ and Fe3+ ions through the fluorescence quenching "switch-off" mode.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Eldhose Iype
- Department of Chemical Engineering, Birla Institute of Technology and Science, Dubai Campus, Dubai 345055, United Arab Emirates
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Joji Ohshita
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima City, Hiroshima, 739-8527, Japan
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
6
|
Pyrrolidine‐Catalyzed Annulations of Quinone Monoacetals with Naphthols: Synthesis of 2‐Oxabicyclo[3.3.1]nonane Skeletons, Transformations and Reaction Mechanism. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
8
|
Zou N, Qin X, Wang Z, Shi W, Mo D. Advances on the Synthesis and Application of α,β-Unsaturated Nitrones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
11
|
Lei L, Liang YF, Liang C, Qin JK, Pan CX, Su GF, Mo DL. Copper(i)-catalyzed [4 + 2] cycloaddition of aza-ortho-quinone methides with bicyclic alkenes. Org Biomol Chem 2021; 19:3379-3383. [DOI: 10.1039/d1ob00319d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient copper(i)-catalyzed [4 + 2] cycloaddition of aza-ortho-quinone methides (ao-QMs) and bicyclic alkenes to prepare tetrahydroquinoline-fused bicycles bearing multiple stereocenters in good yields is reported.
Collapse
Affiliation(s)
- Lu Lei
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Yu-Feng Liang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Cui Liang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Jiang-Ke Qin
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Cheng-Xue Pan
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| |
Collapse
|