1
|
Jiang B, Chen C, Fan G, Sang W, Cheng H, Zhang R, Yuan Y, Li Q, Verpoort F. Cs
2
CO
3
‐Promoted C−O Coupling Protocol Enables Solventless (Hetero)aryl Ether Synthesis under Air Atmosphere. Chem Asian J 2022; 17:e202101370. [DOI: 10.1002/asia.202101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bowen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Guang‐Gao Fan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science Hubei University of Arts and Science Xiangyang 441053 P. R. China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science Hubei University of Arts and Science Xiangyang 441053 P. R. China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Qi‐Zhong Li
- North China Institute of Science and Technology 467 Xueyuan street, East Yanjiao Beijing 101601 P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- National Research Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Ghent University Global Campus 119 Songdomunhwa-Ro, Yeonsu-Gu Incheon 21985 Korea
| |
Collapse
|
2
|
Chen C, Wang YX, Li SB, Wu QY. 3,5-Diaryl substituted sclerotiorin: a novel scaffold of succinate-ubiquinone oxidoreductase inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel and potent inhibitors targeting succinate-ubiquinone oxidoreductase were discovered from the natural product sclerotiorin for the first time.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Song-Bo Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong-You Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
3
|
Fan GG, Jiang BW, Sang W, Cheng H, Zhang R, Yu BY, Yuan Y, Chen C, Verpoort F. Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C-N Coupling Protocol. J Org Chem 2021; 86:14627-14639. [PMID: 34658240 DOI: 10.1021/acs.joc.1c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a metal-free and solvent-free protocol was developed for the C-N coupling of heteroaryl halides and amines, which afforded numerous heteroaryl amines or their hydrochlorides without any external base. Further investigations elucidated that the basicity of amines and specific interactions derived from the X-ray crystallography analysis of 3j'·HCl played pivotal roles in the reactions. Moreover, this protocol was scalable to gram scales and applicable to drug molecules, which demonstrated its practical value for further applications.
Collapse
Affiliation(s)
- Guang-Gao Fan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Bo-Wen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beinong Road 7, Beijing 102206, PR China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.,National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.,Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea
| |
Collapse
|
4
|
Cheng H, Zhu YQ, Liu PF, Yang KQ, Yan J, Sang W, Tang XS, Zhang R, Chen C. Switchable and Scalable Heteroarylation of Primary Amines with 2-Chlorobenzothiazoles under Transition-Metal-Free and Solvent-Free Conditions. J Org Chem 2021; 86:10288-10302. [PMID: 34288680 DOI: 10.1021/acs.joc.1c01019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2-Aminobenzothiazoles comprise a valuable structural motif, which prevails in versatile natural products and biologically active compounds. Herein, a switchable and scalable C-N coupling protocol was developed for the synthesis of these compounds from 2-chlorobenzothiazoles and primary amines. Gratifyingly, this protocol was achieved under transition-metal-free and solvent-free conditions. Moreover, introducing an appropriate amount of NaH completely switched the selectivity from mono- toward di-heteroarylation, and further investigations provided a rationale for this new finding. Furthermore, gram-scale synthesis of representative products 3a and 4a was realized by applying operationally simple and glovebox-free procedures, which revealed the practical usefulness of this work. Finally, evaluation of the quantitative green metrics provided evidence that our protocol was superior over the literature ones in terms of green chemistry and sustainability.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Yan-Qiu Zhu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Peng-Fei Liu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Kai-Qiang Yang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Jin Yan
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Xiao-Sheng Tang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|