1
|
Tang Y, Pu M, Lei M. Cyclopentadienone Diphosphine Ruthenium Complex: A Designed Catalyst for the Hydrogenation of Carbon Dioxide to Methanol. J Org Chem 2024; 89:2431-2439. [PMID: 38306607 DOI: 10.1021/acs.joc.3c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The development of homogeneous metal catalysts for the efficient hydrogenation of carbon dioxide (CO2) into methanol (CH3OH) remains a significant challenge. In this study, a new cyclopentadienone diphosphine ligand (CPDDP ligand) was designed, which could coordinate with ruthenium to form a Ru-CPDDP complex to efficiently catalyze the CO2-to-methanol process using dihydrogen (H2) as the hydrogen resource based on density functional theory (DFT) mechanistic investigation. This process consists of three catalytic cycles, stage I (the hydrogenation of CO2 to HCOOH), stage II (the hydrogenation of HCOOH to HCHO), and stage III (the hydrogenation of HCHO to CH3OH). The calculated free energy barriers for the hydrogen transfer (HT) steps of stage I, stage II, and stage III are 7.5, 14.5, and 3.5 kcal/mol, respectively. The most favorable pathway of the dihydrogen activation (DA) steps of three stages to regenerate catalytic species is proposed to be the formate-assisted DA step with a free energy barrier of 10.4 kcal/mol. The calculated results indicate that the designed Ru-CPDDP and Ru-CPDDPEt complexes could catalyze hydrogenation of CO2 to CH3OH (HCM) under mild conditions and that the transition-metal owning designed CPDDP ligand framework be one kind of promising potential efficient catalysts for HCM.
Collapse
Affiliation(s)
- Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P.R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Song Z, Liu J, Xing S, Shao X, Li J, Peng J, Bai Y. PNP-type ligands enabled copper-catalyzed N-formylation of amines with CO 2 in the presence of silanes. Org Biomol Chem 2023; 21:832-837. [PMID: 36602113 DOI: 10.1039/d2ob01986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sustainable catalytic transformation of carbon dioxide into valuable fine chemicals with high efficiency is a global challenge as although CO2 is an abundant, nontoxic, and sustainable carbon feedstock it is also the most important factor behind the Greenhouse Effect. We describe herein a PNP-type ligand-enabled copper-catalyzed N-formylation of amines utilizing CO2 as the building block in the presence of hydrosilane as the reductant. Our current protocol featured newly synthesized PNP-type ligands with broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Zijie Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jun Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Shuya Xing
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiayun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Li D, Wei L, Xiong W, Jiang H, Qi C. Palladium-Catalyzed Reductive Formylation of Aryl Iodides with CO 2 under Mild Conditions. J Org Chem 2023; 88:5231-5237. [PMID: 36644860 DOI: 10.1021/acs.joc.2c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A palladium-catalyzed reductive formylation of aryl iodides with carbon dioxide as the carbonyl source under mild reaction conditions was realized by using a combination of Pd(PCy3)2Cl2 and di-2-pyridyl ketone as the catalyst and phenylsilane as the reductive reagent, leading to a variety of aromatic aldehydes in moderate to excellent yields. The protocol features wide substrate scope, good functional group tolerance, and simple operation.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Zhou Y, Zhao Y, Shi X, Tang Y, Yang Z, Pu M, Lei M. A theoretical study on the hydrogenation of CO 2 to methanol catalyzed by ruthenium pincer complexes. Dalton Trans 2022; 51:10020-10028. [PMID: 35703402 DOI: 10.1039/d2dt01352e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, a density functional theory (DFT) study was performed to investigate thoroughly the cascade reaction mechanism for the hydrogenation of carbon dioxide to methanol catalyzed by ruthenium pincer complex [RuH2(Me2PCH2SiMe2)2NH(CO)]. Three catalytic stages involving the hydrogenation of carbon dioxide (stage I), formic acid (stage II) and formaldehyde (stage III) were studied. The calculated results show that the dominant H2 activation strategy in the hydrogenation of CO2 to methanol may not be the methanol-assisted H2 activation, but the formate-assisted H2 activation. In this cascade reaction, all energy spans of stage I, II and III are 20.2 kcal mol-1 of the formate-assisted H2 activation. This implies that it could occur under mild conditions. Meanwhile, the catalyst is proposed to be efficient for the transfer hydrogenation using isopropanol as the hydrogen resource, and the ruthenium pincer complexes [RuH2(Me2PCH2SiMe2)2NH(CO)], [RuH2(Ph2PCH2SiMe2)2NH(CO)] and [RuH2(Me2PCH2SiMe2)2NH(CO)] exhibit similar catalytic activities for the hydrogenation of CO2 to methanol.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China. .,School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Zuoyin Yang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Fang X, Li B, Jin J, Duan N. Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into 1,3-Propanediol. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|