1
|
Ruzi Z, Bozorov K, Nie L, Zhao J, Akber Aisa H. Discovery of novel (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one as DDR2 kinase inhibitor: Synthesis, molecular docking, and anticancer properties. Bioorg Chem 2023; 135:106506. [PMID: 37030105 DOI: 10.1016/j.bioorg.2023.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
We report the synthesis, molecular docking and anticancer properties of the novel compound (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one (PP562). PP562 was screened against sixteen human cancer cell lines and exhibited excellent antiproliferative activity with IC50 values ranging from 0.016 to 5.667 μM. Experiments were carried out using the target PP562 at a single dose of 1.0 μM against a kinase panel comprising 100 different enzymes. A plausible binding mechanism for PP562 inhibition of DDR2 was determined using molecular dynamic analysis. The effect of PP562 on cell proliferation was also examined in cancer cell models with both high and low expression of the DDR2 gene; PP562 inhibition of high-expressing cells was more prominent than that for low expressing cells. PP562 also exhibits excellent anticancer potency toward the HGC-27 gastric cancer cell line. In addition, PP562 inhibits colony formation, cell migration, and adhesion, induces cell cycle arrest at the G2/M phase, and affects ROS generation and cell apoptosis. After DDR2 gene knockdown, the antitumor effects of PP562 on tumor cells were significantly impaired. These results suggested that PP562 might exert its inhibitory effect on HCG-27 proliferation through the DDR2 target.
Collapse
|
2
|
Song B, Nie L, Bozorov K, Niu C, Kuryazov R, Akber Aisa H, Zhao J. Furo[2,3-d]pyrimidines as Mackinazolinone/Isaindigotone Analogs: Synthesis, Modification, Antitumor Activity, and Molecular Docking Study. Chem Biodivers 2023; 20:e202201059. [PMID: 36680784 DOI: 10.1002/cbdv.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The chemical transformation of the tricyclic furo[2,3-d]pyrimidines was performed under isosteric and scaffold-hopping strategies focusing on the synthesis of its arylidene and imine-containing derivatives. Naturally-occurring alkaloids mackinazolinone and isaindigotone were as templates of target heterocycles. Synthesized compounds evaluated for their antitumor activity on human cancer cervical HeLa, breast MCF-7, and colon HT-29 cell lines. Four compounds: 8c, 8e, 10b, and 10c demonstrated potency against HeLa and HT-29 cell lines, and IC50 values were between 7.37-13.72 μM, respectively. The molecular docking results showed that compounds 8c and 10b had good binding and high matching with the target EGFR protein.
Collapse
Affiliation(s)
- Buer Song
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- Faculty of Chemistry, Samarkand State University, University Blvd. 15, Samarkand, 140104, Uzbekistan
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Rustamkhon Kuryazov
- Faculty of Chemistry, Samarkand State University, University Blvd. 15, Samarkand, 140104, Uzbekistan
- Urgench State University, Kh. Olimjon st. 14, Urgench, 220100, Uzbekistan
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Novel pyrazolo[3,4-d]pyrimidines as potential anticancer agents: Synthesis, VEGFR-2 inhibition, and mechanisms of action. Biomed Pharmacother 2022; 156:113948. [DOI: 10.1016/j.biopha.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
|