1
|
Wang B, Lu T, Wang Z, Chang W, Liu L, Li J. Ultrasound-Assisted Remote Benzylic C(sp 3)-H Alkylation of N-Fluoroamides with Enol Silanes. J Org Chem 2024; 89:16473-16484. [PMID: 39508383 DOI: 10.1021/acs.joc.4c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We have developed an ultrasound-assisted remote benzylic C(sp3)-H alkylation of N-fluorobenzamides with enol silanes; a series of β-aryl substituted propiophenones was generated in good to high yields. This reaction represents a formal C(sp3)-C(sp3) coupling and features simplicity, high efficiency, and wide substrate scope in a multiple-step sequential process, which involves N-F homolysis, 1,5-hydrogen atom transfer, benzylic radical addition, oxidation by copper(II) salt, and removal of the trimethylsilyl group. Also, DFT theoretical calculations and Marcus theory were employed to consolidate the proposed reaction mechanism.
Collapse
Affiliation(s)
- Boyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Tianyu Lu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Ziyu Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Weixing Chang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Lingyan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Jing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
2
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024; 22:8755-8763. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Cui Y, Zhou L, Wu J, Wei C, Wang W, Chen H. Lewis Acid-Promoted Oxidative Cleavage of Carbon-Carbon Bonds: Synthesis of N-Arylated Lactam-Type Iminosugars. J Org Chem 2024; 89:3383-3389. [PMID: 38364205 DOI: 10.1021/acs.joc.3c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In this paper, a mild strategy for the oxidative cleavage of carbon-carbon bonds catalyzed by Lewis acid was developed in air condition at room temperature. Under such conditions, the bis-carbonyl compounds 3 were directly afforded from the reaction of D-ribose tosylate 1 and aniline in excellent yields through the oxidative cleavage of the key intermediate iminium-ion A and its tautomer enamine B. A series of N-arylated lactam-type iminosugars 5 were then successfully obtained by removing the isopropylidene group from 3 with the aid of the condensation agent DCC. Additionally, reduction of A and the removal of the isopropylidene group could provide N-arylated iminosugars 4. This strategy enables the oxidative cleavage of carbon-carbon bonds under mild conditions and facilitates the synthesis of the novel iminosugars with potent biological activity.
Collapse
Affiliation(s)
- Yaxin Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Likai Zhou
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, Hebei 054001, P. R. China
| | - Jilai Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weiming Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, Hebei 071002, P. R. China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
4
|
Wu J, Peng Z, Shen T, Liu ZQ. Electrosynthesis of ortho‐Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)‐N Bonds of N‐Boc Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jintao Wu
- Nanjing University of Chinese Medicine CHINA
| | - Zehui Peng
- Nanjing University of Chinese Medicine CHINA
| | - Tong Shen
- Nanjing University of Chinese Medicine CHINA
| | - Zhong-Quan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University CHINA
| |
Collapse
|
5
|
Zheng TY, Zhou YQ, Yu N, Li YL, Wei T, Peng L, Ling Y, Jiang K, Wei Y. Deconstructive Insertion of Oximes into Coumarins: Modular Synthesis of Dihydrobenzofuran-Fused Pyridones. Org Lett 2022; 24:2282-2287. [PMID: 35319216 DOI: 10.1021/acs.orglett.2c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of a copper catalyst, a series of oximes undergo deconstructive insertion into coumarins to afford structurally interesting dihydrobenzofuran-fused pyridones in moderate to good yields with good functional group compatibility. The reaction likely involves a radical relay annulation, leading to the ring opening of the lactone moiety of the coumarins, and simultaneous formation of three new bonds. The investigation of photoluminescent properties reveals that several obtained compounds may have potential as fluorescent materials.
Collapse
Affiliation(s)
- Ting-Yu Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tao Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lan Peng
- Basic Department, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yu Ling
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ye Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|