1
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
2
|
Zhang HH, Li TZ, Liu SJ, Shi F. Catalytic Asymmetric Synthesis of Atropisomers Bearing Multiple Chiral Elements: An Emerging Field. Angew Chem Int Ed Engl 2024; 63:e202311053. [PMID: 37917574 DOI: 10.1002/anie.202311053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
With the rapid development of asymmetric catalysis, the demand for the enantioselective synthesis of complex and diverse molecules with different chiral elements is increasing. Owing to the unique features of atropisomerism, the catalytic asymmetric synthesis of atropisomers has attracted a considerable interest from the chemical science community. In particular, introducing additional chiral elements, such as carbon centered chirality, heteroatomic chirality, planar chirality, and helical chirality, into atropisomers provides an opportunity to incorporate new properties into axially chiral compounds, thus expanding the potential applications of atropisomers. Thus, it is important to perform catalytic asymmetric transformations to synthesize atropisomers bearing multiple chiral elements. In spite of challenges in such transformations, in recent years, chemists have devised powerful strategies under asymmetric organocatalysis or metal catalysis, synthesizing a wide range of enantioenriched atropisomers bearing multiple chiral elements. Therefore, the catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements has become an emerging field. This review summarizes the rapid progress in this field and indicates challenges, thereby promoting this field to a new horizon.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Tian-Zhen Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Si-Jia Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
Wu SF, Zhang GK, Wang X, He ZJ, Zhang YC, Shi F. Organocatalytic Diastereoselective (4 + 1) Cycloaddition of o-Hydroxyphenyl-Substituted Secondary Phosphine Oxides. J Org Chem 2023; 88:16497-16510. [PMID: 37982674 DOI: 10.1021/acs.joc.3c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The first organocatalytic diastereoselective (4 + 1) cycloaddition of o-hydroxyphenyl-substituted secondary phosphine oxides (SPOs) has been established, which makes use of o-hydroxyphenyl substituted SPOs as suitable four-atom phosphorus-containing 1,4-dinucleophiles and 3-indolylformaldehydes as competent 1,1-dielectrophiles under Bro̷nsted acid catalysis. The reaction mechanism was suggested to involve the formation of 3-indolylmethanol intermediates and vinyliminium intermediates, which played an important role in controlling the reactivity and diastereoselectivity of the (4 + 1) cycloaddition under Bro̷nsted acid catalysis. By this approach, a series of benzo oxaphospholes bearing P- and C-stereocenters were synthesized in moderate to good yields (50%-95% yields) with excellent diastereoselectivities (all >95:5 dr). This reaction not only represents the first organocatalytic diastereoselective (4 + 1) cycloaddition of o-hydroxyphenyl-substituted SPOs but also provides an efficient and diastereoselective method for the construction of phosphorus-containing benzo five-membered heterocyclic skeletons bearing both P-stereocenter and C-stereocenter.
Collapse
Affiliation(s)
- Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guo-Ke Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhuo-Jing He
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Chen ZB, Liu RX, Li ZH, Ding TM, Bai HY, Shen Z, Zhang SY. An Axially Chiral Styrene-Phosphine Ligand for Pd-Catalyzed Asymmetric N-Alkylation of Indoles. J Org Chem 2023; 88:14719-14727. [PMID: 37792094 DOI: 10.1021/acs.joc.3c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An efficient palladium-catalyzed enantioselective direct N-alkylation of indoles using a novel type of axially chiral styrene-phosphine ligand SJTU-PHOS-1 was developed. This reaction demonstrated good functional group compatibility and a wide range scope of substrates in mild conditions. Moreover, the DFT calculations expounded the coordination mode of the metal catalyst and the axially chiral styrene-phosphine ligand in the enantioselectivity control.
Collapse
Affiliation(s)
- Zhen-Bang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Wang N, Yan X, Hu ZT, Feng Y, Zhu L, Chen ZH, Wang H, Wang QL, Ouyang Q, Zheng PF. Intramolecular H-Bonds in an Organocatalyst Enabled an Asymmetric Michael/Alkylation Cascade Reaction to Construct Spirooxindoles Incorporating a Densely Substituted Cyclopropane Motif. Org Lett 2022; 24:8553-8558. [DOI: 10.1021/acs.orglett.2c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Na Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Yan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zi-Tian Hu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Feng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zi-Hang Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Huan Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quan-Ling Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
6
|
Zhang HH, Shi F. Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications. Acc Chem Res 2022; 55:2562-2580. [PMID: 36053083 DOI: 10.1021/acs.accounts.2c00465] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Catalytic atroposelective syntheses of axially chiral compounds have stimulated extensive interest in multiple communities, such as synthetic chemistry, biochemistry, and materials science, because of the intriguing characteristics of atropisomerism. In particular, atropisomeric indole derivatives, which contain a kind of five-membered heterocyclic framework, are widely distributed in a number of natural alkaloids, biologically relevant compounds, chiral ligands, and chiral organocatalysts. Hence, the catalytic atroposelective synthesis of indole derivatives bearing axial chirality is of considerable importance and has become an emerging focus of research. However, there are substantial challenges associated with the atroposelective synthesis of indole derivatives, including remote ortho-substituents around the chiral axis, a lower barrier for rotation, and a weaker configurational stability than that of atropisomeric six-membered biaryls. Therefore, the development of effective strategies toward the catalytic atroposelective synthesis of indole derivatives has become an urgent task.In order to tackle these challenges and to accomplish the task, our group devised a unique strategy of designing indole-derived platform molecules and developing organocatalytic enantioselective transformations of such platform molecules to synthesize atropisomeric indole derivatives; asymmetric organocatalysis has tremendous advantages and was the research area recognized by the Nobel Prize in Chemistry in 2021. This Account summarizes our endeavors in the organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality. In brief, we devised and developed a series of indole-derived platform molecules, such as indolylmethanols, (hetero)aryl indoles, oxindole-based styrenes, N-aminoindoles, and indole-based homophthalic anhydrides, by introducing different functional groups onto the indole ring to achieve new reactivity and modulate the reactive site of the indole ring. As a result, these indole-derived platform molecules possess versatile and unique reactivity and are capable of undergoing a variety of organocatalytic enantioselective transformations for preparing structurally diversified indole derivatives with axial chirality.We used these strategies to accomplish the atroposelective synthesis of plenty of indole derivatives with axial chirality, including (hetero)aryl indoles, alkene-indoles, oxindole-based styrenes, N-pyrrolylindoles, and isochromenone-indoles. In addition, we gave a thorough and detailed understanding of the designed reaction by investigating the reaction pathway and activation mode. More importantly, we studied the biological activity of some products and performed catalyst design on the basis of atropisomeric indole moieties, which are helpful for disclosing more applications of indole derivatives bearing axial chirality.In the future, the organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality will indubitably remain a frontier topic in the research area of asymmetric catalysis and chiral indole chemistry despite challenging issues, for instance, the atroposelective synthesis of novel indole derivatives bearing an unconventional chiral axis, the development of atropisomeric indole derivatives into powerful catalysts or ligands, and the discovery of atroposelective indole derivatives as potent drug candidates. We hope our efforts summarized in this Account will encourage chemists worldwide to devise innovative strategies toward solving the challenging issues that remain in this field, thus promoting its development to a higher level.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Gehu Road No. 21, Wujin District, Changzhou 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Gehu Road No. 21, Wujin District, Changzhou 213164, China.,School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road No. 101, Tongshan District, Xuzhou 221116, China
| |
Collapse
|