1
|
Hathnagoda R, Gunathilake P, Buddhinee T, Welgama P, Gunarathna H, Perera H, Ranasinghe K. Diversity and Species Composition of Midgut Symbiotic Bacteria in Culex quinquefasciatus Mosquitoes in Gampaha District, Sri Lanka. J Trop Med 2024; 2024:1832200. [PMID: 39376799 PMCID: PMC11458302 DOI: 10.1155/2024/1832200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 10/09/2024] Open
Abstract
Mosquitoes, notorious for their deadly impact as disease vectors, also hold economic value owing to their roles in disease transmission. The present study focuses on the importance of understanding mosquito gut microbiota for implementing innovative vector control strategies, thereby mitigating disease transmission. The study was conducted in the Gampaha Medical Office of Health (MOH) area of Sri Lanka with the focus of elucidating the microbial diversity within the midgut of Culex quinquefasciatus, a crucial step to support ongoing paratransgenesis efforts. Sampling was performed by utilizing standard mosquito sampling techniques and their midgut homogenates were plated on Plate Count Agar to isolate bacteria, which were then identified through biochemical tests. Subsequently, the most abundant bacterial families were subjected to DNA extraction, PCR amplification, and gene sequencing for species identification. The study revealed the presence of four bacterial families (Staphylococcaceae, Streptococcaceae, Neisseriaceae, and Moraxellaceae) in adult mosquitoes, while larvae harbored an additional family, Micrococcaceae. Interestingly, the relative distribution of midgut bacteria varied significantly among field-caught larval and adult strains from different study areas (chi-square = 1.673; P < 0.05), indicating similar bacterial flora across mosquito life stages and geographical locations. Of particular interest is the identification of Lysinibacillus sphaericus, a bacterium with potential for paratransgenesis applications. Given the high mosquito density in the study area, leveraging paratransgenesis for Cx. quinquefasciatus control is recommended. Furthermore, insights into gut microbes could inform the integration of gut microflora from modified strains into existing Sterile Insect Technique (SIT) and Incompatible Insect Technique (IIT) approaches in Sri Lanka.
Collapse
Affiliation(s)
- Randi Hathnagoda
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Pinidi Gunathilake
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Thilini Buddhinee
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Pabasara Welgama
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Hasini Gunarathna
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Harshani Perera
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Koshila Ranasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya GQ 11600, Sri Lanka
| |
Collapse
|
2
|
Ragab S, Gouda SM, Abdelmoteleb M, El-Shibiny A. The role of identified and characterized bacteriophage ZCEC13 in controlling pathogenic and multidrug-resistant Escherichia coli in wastewater: in vitro study. ENVIRONMENTAL TECHNOLOGY 2024; 45:3544-3558. [PMID: 37255221 DOI: 10.1080/09593330.2023.2220886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
The spread and development of Multi-Drug Resistant (MDR) bacteria in wastewater became beyond control and a global public health concern. The conventional disinfectants used in wastewater treatment methods have been becoming increasingly ineffective against a range of pathogenic and MDR bacteria. Bacteriophages are considered a novel approach to microbial control. Therefore, this study aims to explore the possibility of using phages against pathogenic and MDR Escherichia coli strains isolated from wastewater treatment plants. The wastewater samples were collected from two different treatment plants for E. coli isolation. The antibiotic sensitivity profile and occurrence of virulence and resistant genes were tested in 28 E. coli isolates. Phage ZCEC13 was selected based on its promising activity and host range to undergo identification and characterization. ZCEC13 was evaluated by transmission electron microscopy, genomic sequencing, in vitro lytic activity and tested for its stability under different conditions such as pH, Ultraviolet light exposure, and temperature. The results reported that ZCEC13 belongs to the Caudoviricetes class, with a high antibacterial dynamic. Phage ZCEC13 displayed high stability at different pH values ranging from 2 to 12, good tolerance to temperatures from -4 to 65°C, and high stability at UV exposure for 120 min. Respectively, the findings showed stability of the phage under several conditions and high efficiency in killing MDR bacteria isolated from the treatment plants. Further studies are encouraged to analyse the efficacy of phages as a microbial control agent in wastewater treatment plants.
Collapse
Affiliation(s)
- Samar Ragab
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Shrouk Mohamed Gouda
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | | | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
3
|
Tong YC, Li PC, Yang Y, Lin QY, Liu JT, Gao YN, Zhang YN, Jin S, Qing SZ, Xing FS, Fan YP, Liu YQ, Wang WL, Zhang WM, Ma WR. Detection of Antibiotic Resistance in Feline-Origin ESBL Escherichia coli from Different Areas of China and the Resistance Elimination of Garlic Oil to Cefquinome on ESBL E. coli. Int J Mol Sci 2023; 24:ijms24119627. [PMID: 37298578 DOI: 10.3390/ijms24119627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The development of drug-resistance in the opportunistic pathogen Escherichia coli has become a global public health concern. Due to the share of similar flora between pets and their owners, the detection of pet-origin antibiotic-resistant E. coli is necessary. This study aimed to detect the prevalence of feline-origin ESBL E. coli in China and to explore the resistance elimination effect of garlic oil to cefquinome on ESBL E. coli. Cat fecal samples were collected from animal hospitals. The E. coli isolates were separated and purified by indicator media and polymerase chain reaction (PCR). ESBL genes were detected by PCR and Sanger sequencing. The MICs were determined. The synergistic effect of garlic oil and cefquinome against ESBL E. coli was investigated by checkerboard assays, time-kill and growth curves, drug-resistance curves, PI and NPN staining, and a scanning electronic microscope. A total of 80 E. coli strains were isolated from 101 fecal samples. The rate of ESBL E. coli was 52.5% (42/80). The prevailing ESBL genotypes in China were CTX-M-1, CTX-M-14, and TEM-116. In ESBL E. coli, garlic oil increased the susceptibility to cefquinome with FICIs from 0.2 to 0.7 and enhanced the killing effect of cefquinome with membrane destruction. Resistance to cefquinome decreased with treatment of garlic oil after 15 generations. Our study indicates that ESBL E. coli has been detected in cats kept as pets. The sensitivity of ESBL E. coli to cefquinome was enhanced by garlic oil, indicating that garlic oil may be a potential antibiotic enhancer.
Collapse
Affiliation(s)
- Yin-Chao Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Peng-Cheng Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yang Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qing-Yi Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jin-Tong Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yi-Nuo Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yi-Ning Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuo Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Su-Zhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fu-Shan Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yun-Peng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ying-Qiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei-Ling Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wei-Min Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wu-Ren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an 710065, China
| |
Collapse
|
4
|
Fayez MS, Hakim TA, Zaki BM, Makky S, Abdelmoteleb M, Essam K, Safwat A, Abdelsattar AS, El-Shibiny A. Morphological, biological, and genomic characterization of Klebsiella pneumoniae phage vB_Kpn_ZC2. Virol J 2023; 20:86. [PMID: 37138257 PMCID: PMC10158348 DOI: 10.1186/s12985-023-02034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Bacteriophages (phages) are one of the most promising alternatives to traditional antibiotic therapies, especially against multidrug-resistant bacteria. Klebsiella pneumoniae is considered to be an opportunistic pathogen that can cause life-threatening infections. Thus, this study aims at the characterization of a novel isolated phage vB_Kpn_ZC2 (ZCKP2, for short). METHODS The phage ZCKP2 was isolated from sewage water by using the clinical isolate KP/08 as a host strain. The isolated bacteriophage was purified and amplified, followed by testing of its molecular weight using Pulse-Field Gel Electrophoresis (PFGE), transmission electron microscopy, antibacterial activity against a panel of other Klebsiella pneumoniae hosts, stability studies, and whole genome sequencing. RESULTS Phage ZCKP2 belongs morphologically to siphoviruses as indicated from the Transmission Electron Microscopy microgram. The Pulsed Field Gel Electrophoresis and the phage sequencing estimated the phage genome size of 48.2 kbp. Moreover, the absence of lysogeny-related genes, antibiotic resistance genes, and virulence genes in the annotated genome suggests that phage ZCKP2 is safe for therapeutic use. Genome-based taxonomic analysis indicates that phage ZCKP2 represents a new family that has not been formally rated yet. In addition, phage ZCKP2 preserved high stability at different temperatures and pH values (-20 - 70 °C and pH 4 - 9). For the antibacterial activity, phage ZCKP2 maintained consistent clear zones on KP/08 bacteria along with other hosts, in addition to effective bacterial killing over time at different MOIs (0.1, 1, and 10). Also, the genome annotation predicted antibacterial lytic enzymes. Furthermore, the topology of class II holins was predicted in some putative proteins with dual transmembrane domains that contribute significantly to antibacterial activity. Phage ZCKP2 characterization demonstrates safety and efficiency against multidrug-resistant K. pneumoniae, hence ZCKP2 is a good candidate for further in vivo and phage therapy clinical applications.
Collapse
Affiliation(s)
- Mohamed S. Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Toka A. Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787 Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Mohamed Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Kareem Essam
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511 Egypt
| |
Collapse
|
5
|
Tong YC, Zhang YN, Li PC, Cao YL, Ding DZ, Yang Y, Lin QY, Gao YN, Sun SQ, Fan YP, Liu YQ, Qing SZ, Ma WR, Zhang WM. Detection of antibiotic-resistant canine origin Escherichia coli and the synergistic effect of magnolol in reducing the resistance of multidrug-resistant Escherichia coli. Front Vet Sci 2023; 10:1104812. [PMID: 37008355 PMCID: PMC10057116 DOI: 10.3389/fvets.2023.1104812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundThe development of antimicrobial resistance in the opportunistic pathogen Escherichia coli has become a global public health concern. Due to daily close contact, dogs kept as pets share the same E. coli with their owners. Therefore, the detection of antimicrobial resistance in canine E. coli is important, as the results could provide guidance for the future use of antibiotics. This study aimed to detect the prevalence of antibiotic-resistance of canine origin E. coli in Shaanxi province and to explore the inhibition effect of magnolol combined with cefquinome on MDR E. coli, so as to provide evidence for the use of antibiotics.MethodsCanine fecal samples were collected from animal hospitals. The E. coli isolates were separated and purified using various indicator media and polymerase chain reaction (PCR). Drug-resistance genes [aacC2, ant(3')-I, aph(3')-II, aac(6')-Ib-cr, aac(3')-IIe, blaKPC, blaIMP−4, blaOXA, blaCMY, blaTEM−1, blaSHV, blaCTX−M−1, blaCTX−M−9, Qnra, Qnrb, Qnrs, TetA, TetB, TetM, Ermb] were also detected by PCR. The minimum inhibitory concentration (MIC) was determined for 10 antibiotics using the broth-microdilution method. Synergistic activity of magnolol and cefquinome against multidrug-resistant (MDR) E. coli strains was investigated using checkerboard assays, time-kill curves, and drug-resistance curves.ResultsA total of 101 E. coli strains were isolated from 158 fecal samples collected from animal hospitals. MIC determinations showed that 75.25% (76/101) of the E. coli strains were MDR. A total of 22 drug-resistance genes were detected among the 101 strains. The blaTEM−1gene exhibited the highest detection rate (89.77%). The TetA and Sul gene also exhibited high detection rate (66.34 and 53.47%, respectively). Carbapenem-resistant E. coli strains were found in Shangluo and Yan'an. Additionally, in MDR E. coli initially resistant to cefquinome, magnolol increased the susceptibility to cefquinome, with an FICI (Fractional Inhibitory Concentration Index) between 0.125 and 0.5, indicating stable synergy. Furthermore, magnolol enhanced the killing effect of cefquinome against MDR E. coli. Resistance of MDR E. coli to cefquinome decreased markedly after treatment with magnolol for 15 generations.ConclusionOur study indicates that antibiotic-resistance E. coli has been found in domestic dogs. After treatment with magnolol extracted from the Chinese herb Houpo (Magnolia officinalis), the sensitivity of MDR E. coli to cefquinome was enhanced, indicating that magnolol reverses the resistance of MDR E. coli. The results of this study thus provide reference for the control of E. coli resistance.
Collapse
Affiliation(s)
- Yin-Chao Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yi-Ning Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Peng-Cheng Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ya-Li Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dong-Zhao Ding
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yang Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qing-Yi Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi-Nuo Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shao-Qiang Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yun-Peng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ying-Qiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Su-Zhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wu-Ren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Xi'an Veterinary Teaching Hospital, Northwest A&F University, Xi'an, China
- Wu-Ren Ma
| | - Wei-Min Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- *Correspondence: Wei-Min Zhang
| |
Collapse
|
6
|
Detecting mecA in Faecal Samples: A Tool for Assessing Carriage of Meticillin-Resistant Staphylococci in Pets and Owners in the Microbiological ‘Fast Age’? MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sampling animals for carriage of meticillin-resistant, coagulase-positive staphylococci (MRCoPS), considered zoonotic pathogens, can be challenging and time-consuming. Developing methods to identify mecA from non-invasive samples, e.g., faeces, would benefit AMR surveillance and management of MRS carrier animals. This study aimed to distinguish MRS carriers from non-carriers from faecal samples using quantitative polymerase chain reaction (qPCR) for mecA. Paired faecal and nasal swab samples (n = 86) were obtained from 13 dogs and 20 humans as part of a longitudinal study. Nasal MRCoPS carriage (either MR-Staphylococcus aureus or MR-Staphylococcus pseudintermedius was confirmed by identification of species (nuc) and meticillin resistance (mecA) (PCR). Faecal DNA (n = 69) was extracted and a qPCR method was optimised to provide a robust detection method. The presence of faecal mecA was compared between MRS carriers and non-carriers (Kruskal–Wallis test). Nasal swabbing identified seven canine and four human MRCoPS carriers. mecA was detected in 13/69 faecal samples, including four MRCoPS carriers and nine non-carriers. For dogs, there was no significant association (p = 1.000) between carrier status and mecA detection; for humans, mecA was more commonly detected in MRCoPS carriers (p = 0.047). mecA was detected in faeces of MRCoPS carriers and non-carriers by qPCR, but larger sample sizes are required to determine assay sensitivity. This rapid method enables passive surveillance of mecA in individuals and the environment.
Collapse
|
7
|
Characteristics of tet(X4)-Producing Escherichia coli in Chicken and Pig Farms in Hunan Province, China. Antibiotics (Basel) 2023; 12:antibiotics12010147. [PMID: 36671348 PMCID: PMC9854778 DOI: 10.3390/antibiotics12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The plasmid-mediated tigecycline resistance gene tet(X4) confers a high level of resistance to tigecycline. The experiment aims to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from chicken and pig farms in Hunan province, China. METHODS A total of six tet(X4) positive strains were identified in 257 E. coli derived from chicken samples in Xiangtan city (n = 2), pig samples in Xiangxiang city (n = 1), Chenzhou city (n = 2), and Zhuzhou city (n = 1). The presence of tet(X4) was directly detected by PCR assay, and then the broth dilution method determined the antimicrobial susceptibility profile of the tet(X4)-positive isolates. Genomic locations were identified by whole-genome sequencing (WGS) and bioinformatics. RESULTS Almost all tet(X4)-positive strains showed high resistance to multidrug, including tigecycline. Resistome analysis revealed many antibiotic resistance genes, including those with resistance to tetracyclines, β-lactams, phenicols, quinolones, lincosamides chloramphenicol, aminoglycosides and sulfamids. These tet(X4)-bearing strains exhibited six distract STs, such as ST10, 202, ST218, ST362, ST2077, ST7068. The plasmid replicon types carrying tet(X4) were the hybrid plasmid IncFIA(HI1)/IncHIA/IncHIB(R27) (5/6) and IncX1 (1/6). CONCLUSIONS The presence of similar genetic environments in E. coli from different cities suggests there may be horizontal transmission pathways promoting the broad spread of drug-resistant genes in Hunan Province, putting great pressure on multidrug resistance monitoring.
Collapse
|
8
|
Lin H, Chen W, Zhou R, Yang J, Wu Y, Zheng J, Fei S, Wu G, Sun Z, Li J, Chen X. Characteristics of the plasmid-mediated colistin-resistance gene mcr-1 in Escherichia coli isolated from a veterinary hospital in Shanghai. Front Microbiol 2022; 13:1002827. [PMID: 36386648 PMCID: PMC9650080 DOI: 10.3389/fmicb.2022.1002827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 09/09/2023] Open
Abstract
The mobile colistin-resistance (mcr)-1 gene is primarily detected in Enterobacteriaceae species, such as Escherichia coli and Salmonella enterica, and represents a significant public health threat. Herein, we investigated the prevalence and characteristics of mcr-1-positive E. coli (MCRPEC) in hospitalized companion animals in a pet hospital in Shanghai, China, from May 2021 to July 2021. Seventy-nine non-duplicate samples were collected from the feces (n = 52) and wounds (n = 20) of cats and dogs and the surrounding hospital environment (n = 7). Seven MCRPEC strains, identified using screening assays and polymerase chain reaction, exhibited multidrug-resistant phenotypes in broth-microdilution and agar-dilution assays. Based in whole-genome sequencing and bioinformatics analyses, all seven isolates were determined to belong to sequence type (ST) 117. Moreover, the Incl2 plasmid was prevalent in these MCRPEC isolates, and the genetic environment of the seven E. coli strains was highly similar to that of E. coli SZ02 isolated from human blood. The isolates also harbored the β-lactamase gene bla CTX-M-65, and florfenicol resistance gene floR, among other resistance genes. Given that horizontal transfer occurred in all seven strains, E. coli plasmid transferability may accelerate the emergence of multidrug-resistant bacteria and may be transmitted from companion animals to humans. Therefore, the surveillance of MCRPEC isolates among companion animals should be strengthened.
Collapse
Affiliation(s)
- Hongguang Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Rushun Zhou
- Hunan Provincial Institution of Veterinary Drug and Feed Control, Changsha, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiaomei Zheng
- Changsha Animal and Plant Disease Control Center, Changsha, Hunan, China
| | - Shuyue Fei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Guiting Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
9
|
Soliman SA, Khaleil MM, Metwally RA. Evaluation of the Antifungal Activity of Bacillusamyloliquefaciens and B. velezensis and Characterization of the Bioactive Secondary Metabolites Produced against Plant Pathogenic Fungi. BIOLOGY 2022; 11:biology11101390. [PMID: 36290294 PMCID: PMC9599029 DOI: 10.3390/biology11101390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 04/21/2023]
Abstract
Endophytic bacteria are plant-beneficial bacteria with a broad host range. They provide numerous benefits to their hosts, helping them tolerate several biotic and abiotic stresses. An interest has recently been developed in endophytic bacteria which are producing bioactive compounds that contribute to the biological control of various phytopathogens. This research paper aimed to investigate the potentiality of new local strains of endophytic bacteria such as Bacillus amyloliquefaciens and B. velezensis and the production of several antimicrobial metabolites associated with the biocontrol of Alternaria sp., which cause serious diseases and affect important vegetable crops in Egypt. Twenty-five endophytic bacteria isolates were obtained from different plants cultivated in El-Sharkia Governorate, Egypt. Dual culture technique was used to evaluate the bacterial isolates' antagonistic potentiality against Alternaria sp. and Helminthosporium sp. The most active bacterial isolates obtained were selected for further screening. The antifungal activity of the most active endophytic bacterial isolate was assessed in vivo on pepper seedlings as a biocontrol agent against Alternaria sp. A significant antifungal activity was recorded with isolates C1 and T5 against Alternaria sp. and Helminthosporium sp. The bacterial endophyte discs of C1 and T5 showed the highest inhibitory effect against Alternaria sp. at 4.7 and 3.1 cm, respectively, and Helminthosporium sp. at 3.9 and 4.0 cm, respectively. The most active endophytic isolates C1 and T5 were identified and the 16S rRNA sequence was submitted to the NCBI GenBank database with accession numbers: MZ945930 and MZ945929 for Bacillus amyloliquefaciens and Bacillus velezensis, respectively. The deformity of pathogenic fungal mycelia of Alternaria sp. and Helminthosporium sp. was studied under the biotic stress of bacteria. The culture filtrates of B. amyloliquefaciens and B. velezensis were extracted with different solvents, and the results indicated that hexane was the most efficient. Gas Chromatography-Mass Spectrometry revealed that Bis (2-ethylhexyl) phthalate, Bis (2-ethylhexyl) ester, and N,N-Dimethyldodecylamine were major constituents of the endophytic crude extracts obtained from B. amyloliquefaciens and B. velezensis. The in vivo results showed that Alternaria sp. infection caused the highest disease incidence, leading to a high reduction in plant height and in the fresh and dry weights of pepper plants. With B. amyloliquefaciens application, DI significantly diminished compared to Alternaria sp. infected pepper plants, resulting in an increase in their morphological parameters. Our findings allow for a reduction of chemical pesticide use and the control of some important plant diseases.
Collapse
Affiliation(s)
- Shereen A. Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Khaleil
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46429, Saudi Arabia
| | - Rabab A. Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +20-101-625-9372; Fax: +20-055-320-8213
| |
Collapse
|
10
|
Hu J, Yang J, Chen W, Liu Z, Zhao Q, Yang H, Sun Z, Chen X, Li J. Prevalence and Characteristics of mcr-1-Producing Escherichia coli in Three Kinds of Poultry in Changsha, China. Front Microbiol 2022; 13:840520. [PMID: 35464934 PMCID: PMC9021793 DOI: 10.3389/fmicb.2022.840520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Colistin is one of the last-line drugs against difficult to treat and multidrug-resistant Gram-negative bacteria. The emergence of mobile colistin resistance gene mcr-1 increased worldwide attention on colistin resistance. mcr-1 is the dominant gene that caused resistance to colistin in chicken-derived Escherichia coli (E. coli) in China; it has a broad resistance spectrum and causes multiple drug resistance problems. There are only few studies on mcr-positive E. coli (MCRPEC) from laying ducks and quails in China. Here, the molecular and epidemiological characteristics of MCRPEC from three kinds of poultry farms (laying duck, quail, and broiler) were investigated in Changsha, China. A total of 17 mcr-positive E. coli (MCRPEC) strains were screened in 690 samples from the three kinds of poultry farms. This is the first report on MCRPEC, to our best knowledge, derived from quail. All the MCRPEC strains were resistant to colistin, sulfamethoxazole-trimethoprim, florfenicol, tetracycline, and ciprofloxacin, and mildly resistant to tigecycline, gentamicin, piperacillin/tazobactam, cefotaxime, and ceftiofur. All the strains were sensitive to meropenem and amikacin. By bioinformatics analysis, 17 MCRPEC strains belonging to 11 MLST types were distributed in phylogroups A (58.8%), B1 (23.5%), and phylogroup D (17.6%). mcr-1 was located in IncI2 plasmid with typical plasmid conjugation transfer part, type IV secretory system, and tellurium-resistant protein, increasing transmission capacity to other bacteria. Monitoring of colistin-resistant bacteria in poultry farms should be strengthened.
Collapse
Affiliation(s)
- Jufang Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhihong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Qin Zhao
- Liuyang Animal Disease Prevention and Control Center, Hunan, China
| | - Hui Yang
- Liuyang Animal Disease Prevention and Control Center, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Xiaojun Chen,
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
- Jiyun Li,
| |
Collapse
|
11
|
El-Saadony MT, Saad AM, Taha TF, Najjar AA, Zabermawi NM, Nader MM, AbuQamar SF, El-Tarabily KA, Salama A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci 2021; 28:6782-6794. [PMID: 34866977 PMCID: PMC8626219 DOI: 10.1016/j.sjbs.2021.07.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (Na2SeO3) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming Na2SeO3 to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as Lactobacillus paracasei HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by L. paracasei HM1 were found to be pH (6.0), temperature (35˚C), Na2SeO3 (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of L. paracasei-SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of L. paracasei-SeNPs. The size of L. paracasei-SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was -20.1 ± 0.6 mV in one peak. The data also revealed that L. paracasei-SeNPs effectively inhibited the growth of Candida and Fusarium species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from L. paracasei HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using L. paracasei HM1 outperforms the chemically produced SeNPs. In vivo studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Taha F. Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Azhar A. Najjar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nidal M. Zabermawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha M. Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Ali Salama
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
12
|
Ranasinghe K, Gunathilaka N, Amarasinghe D, Rodrigo W, Udayanga L. Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka. Parasit Vectors 2021; 14:433. [PMID: 34454583 PMCID: PMC8400895 DOI: 10.1186/s13071-021-04900-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The midgut microbiota of mosquitoes maintain basal immune activity and immune priming. In recent years, scientists have focused on the use of microbial communities for vector control interventions. In the present study, the midgut bacteria of larvae and adults of Aedes aegypti and Ae. albopictus were assessed using both field-collected and laboratory-reared mosquitoes from Sri Lanka. METHODS Adults and larvae of Ae. aegypti and Ae. albopictus were collected from three selected areas in Gampaha Medical Officer of Health area, Gampaha District, Western Province, Sri Lanka. Bacterial colonies isolated from mosquito midgut dissections were identified by PCR amplification and sequencing of partial 16S rRNA gene fragments. RESULTS Adults and larvae of Ae. aegypti and Ae. albopictus harbored 25 bacterial species. Bacillus endophyticus and Pantoea dispersa were found more frequently in field-collected Ae. aegypti and Ae. albopictus adults, respectively. The midgut bacteria of Ae. aegypti and Ae. albopictus adults (X2 = 556.167, df = 72, P < 0.001) and larvae (X2 = 633.11, df = 66, P < 0.001) were significantly different. There was a significant difference among the bacterial communities between field-collected adults (X2 = 48.974, df = 10, P < 0.001) and larvae (X2 = 84.981, df = 10, P < 0.001). Lysinibacillus sphaericus was a common species in adults and larvae of laboratory-reared Ae. aegypti. Only P. dispersa occurred in the field-collected adults of Ae. aegypti and Ae. albopictus. Species belonging to genera Terribacillus, Lysinibacillus, Agromyces and Kocuria were recorded from Aedes mosquitoes, in accordance with previously reported results. CONCLUSIONS This study generated a comprehensive database on the culturable bacterial community found in the midgut of field-collected (Ae. aegypti and Ae. albopictus) and laboratory-reared (Ae. aegypti) mosquito larvae and adults from Sri Lanka. Data confirm that the midgut bacterial diversity in the studied mosquitoes varies according to species, developmental stage and strain (field vs laboratory).
Collapse
Affiliation(s)
- Koshila Ranasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Nayana Gunathilaka
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | - Deepika Amarasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Wasana Rodrigo
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Lahiru Udayanga
- Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makadura, Sri Lanka
| |
Collapse
|
13
|
Fayez MS, Hakim TA, Agwa MM, Abdelmoteleb M, Aly RG, Montaser NN, Abdelsattar AS, Rezk N, El-Shibiny A. Topically Applied Bacteriophage to Control Multi-Drug Resistant Klebsiella pneumoniae Infected Wound in a Rat Model. Antibiotics (Basel) 2021; 10:antibiotics10091048. [PMID: 34572629 PMCID: PMC8470685 DOI: 10.3390/antibiotics10091048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
(Background): Multi-drug-resistant Klebsiella pneumoniae (MDR-KP) has steadily grown beyond antibiotic control. Wound infection kills many patients each year, due to the entry of multi-drug resistant (MDR) bacterial pathogens into the skin gaps. However, a bacteriophage (phage) is considered to be a potential antibiotic alternative for treating bacterial infections. This research aims at isolating and characterizing a specific phage and evaluate its topical activity against MDR-KP isolated from infected wounds. (Methods): A lytic phage ZCKP8 was isolated by using a clinical isolate KP/15 as a host strain then characterized. Additionally, phage was assessed for its in vitro host range, temperature, ultraviolet (UV), and pH sensitivity. The therapeutic efficiency of phage suspension and a phage-impeded gel vehicle were assessed in vivo against a K. pneumoniae infected wound on a rat model. (Result): The phage produced a clear plaque and was classified as Siphoviridae. The phage inhibited KP/15 growth in vitro in a dose-dependent pattern and it was found to resist high temperature (˂70 °C) and was primarily active at pH 5; moreover, it showed UV stability for 45 min. Phage-treated K. pneumoniae inoculated wounds showed the highest healing efficiency by lowering the infection. The quality of the regenerated skin was evidenced via histological examination compared to the untreated control group. (Conclusions): This research represents the evidence of effective phage therapy against MDR-KP.
Collapse
Affiliation(s)
- Mohamed S. Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
| | - Toka A. Hakim
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 11223, Egypt; (T.A.H.); (N.N.M.)
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Rania G. Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Nada N. Montaser
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 11223, Egypt; (T.A.H.); (N.N.M.)
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
- Center for X-ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
- Correspondence:
| |
Collapse
|
14
|
Molecular Characterization of Culturable Aerobic Bacteria in the Midgut of Field-Caught Culex tritaeniorhynchus, Culex gelidus, and Mansonia annulifera Mosquitoes in the Gampaha District of Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8732473. [PMID: 33083488 PMCID: PMC7556092 DOI: 10.1155/2020/8732473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 01/09/2023]
Abstract
Background Larval and adult mosquito stages harbor different extracellular microbes exhibiting various functions in their digestive tract including host-parasite interactions. Midgut symbiotic bacteria can be genetically exploited to express molecules within the vectors, altering vector competency and potential for disease transmission. Therefore, identification of mosquito gut inhabiting microbiota is of ample importance before developing novel vector control strategies that involve modification of vectors. Method Adult mosquitoes of Culex tritaeniorhynchus, Culex gelidus, and Mansonia annulifera were collected from selected Medical Officer of Health (MOH) areas in the Gampaha district of Sri Lanka. Midgut lysates of the field-caught non-blood-fed female mosquitoes were cultured in Plate Count Agar medium, and Prokaryotic 16S ribosomal RNA partial genes of the isolated bacteria colonies were amplified followed by DNA sequencing. Diversity indices were used to assess the diversity and richness of the bacterial isolates in three mosquito species. The distribution pattern of bacterial isolates between different mosquito species was assessed by Distance-Based Redundancy Analysis (dbRDA). Results A total of 20 bacterial species (Staphylococcus pasteuri, Bacillus megaterium, Staphylococcus cohnii, Pantoea dispersa, Staphylococcus chromogenes, Bacillus aquimaris, Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus warneri, Moraxella osloensis, Enterobacter sp., Klebsiella michiganensis, Staphylococcus hominis, Staphylococcus saprophyticus, Streptomyces sp., Bacillus niacin, Cedecea neteri, Micrococcus luteus, Lysinibacillus sphaericus, and Bacillus licheniformis) were identified. All of these species belonged to three phyla, Proteobacteria, Firmicutes, and Actinobacteria, out of which phylum Firmicutes (71.1%) was the most prominent. The least number of species was recorded from Actinobacteria. The relative distribution of midgut microbes in different mosquito species differed significantly among mosquito species (Chi-square, χ 2 = 486.091; df = 36; P ≤ 0.001). Midgut microbiota of Cx. tritaeniorhynchus and Cx. gelidus indicated a similarity of 21.51%, while Ma. annulifera shared a similarity of 6.92% with the cluster of above two species. The gut microbiota of Cx. tritaeniorhynchus was also significantly more diverse and more evenly distributed compared to Ma. annulifera. Simpson's diversity, Margalef's diversity, and Menhinick's diversity indices were higher in Cx. gelidus. Of the recorded species, P. dispersa and strains of nonpathogenic species in Bacillaceae family (B. megaterium, B. niacini, B. licheniformis, and L. sphaericus) can be recommended as potential candidates for paratransgenesis. Conclusion The relative distribution of midgut microbes in different mosquito species differed significantly among the three studied adult mosquito species. The present data strongly encourage further investigations to explore the potential usage of these microbes through paratransgenic approach for novel eco-friendly vector control strategies.
Collapse
|
15
|
The Diversity of Midgut Bacteria among Wild-Caught Phlebotomus argentipes (Psychodidae: Phlebotominae), the Vector of Leishmaniasis in Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5458063. [PMID: 32923482 PMCID: PMC7453272 DOI: 10.1155/2020/5458063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
Phlebotomus argentipes is the main suspected vector for leishmaniasis in Sri Lanka. Investigations on the presence of aerobic bacteria in the gut of sand flies which evidence a potential approach to control leishmaniasis transmission through a paratransgenic strategy are still not available for the local sand fly populations. Field-caught unfed female sand flies collected from three selected Medical Officer of Health (MOH) areas (Polpithigama, Maho, and Galgamuwa) in Kurunegala District, Sri Lanka from August to December 2018 were used. Prokaryotic 16S ribosomal RNA partial gene was amplified and sequenced. Morphological identification revealed the presence of only one sand fly species, P. argentipes (n = 1,969). A total of 20 organisms belonging to two phyla (Proteobactericea and Furmicutes) were detected within the gut microbial community of the studied sand fly specimens. This study documents the first-ever observation of Rhizobium sp. in the midgut of P. argentipes. The presence of Bacillus megaterium, which is considered as a nonpathogenic bacterium with potential use for paratransgenic manipulation of P. argentipes suggest that it may be used as a delivery vehicle to block the vectorial transmission of Leishmania parasites. In addition, Serratia marcescens may be used as a potential candidate to block the parasite development in sand fly vectors since it has evidenced antileishmanial activities in previous investigations. Hence, further studies are required to gain full insight into the potential use of this bacterium in the control of Leishmania parasites through paratransgenesis.
Collapse
|
16
|
Eaton VE, Pettit S, Elkinson A, Houseknecht KL, King TE, May M. Polymicrobial abscess following ovariectomy in a mouse. BMC Vet Res 2019; 15:364. [PMID: 31651316 PMCID: PMC6814026 DOI: 10.1186/s12917-019-2125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/03/2019] [Indexed: 01/05/2023] Open
Abstract
Background Ovariectomy is a common procedure in laboratory rodents used to create a post-menopausal state. Complications including post-surgical abscess are rarely reported, but merit consideration for the health and safety of experimental animals. Case presentation A female C57/black6 mouse was ovariectomized as part of a cohort study. At Day 14 post-surgery, she developed a visible swelling on the right side, which 7 days later increased in size over 24 h, leading to euthanasia of the animal. Gross pathology was consistent with abscess. A core of necrotic tissue was present in the uterine horn. Abscess fluid and affected tissue were collected for Gram stain and bacteriological culture. The abscess core and fluid yielded three distinct types of bacterial colonies identified by 16S ribosomal RNA sequencing as Streptococcus acidominimus, Pasteurella caecimuris, and a novel species in the genus Gemella. Conclusions This is the first report of polymicrobial abscess in a rodent as a complication of ovariectomy, and the first description of a novel Gemella species for which we have proposed the epithet Gemella muriseptica. This presentation represents a potential complication of ovariectomy in laboratory animals.
Collapse
Affiliation(s)
- Victoria E Eaton
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA.,Center of Excellences in the Neurosciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Samuel Pettit
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Andrew Elkinson
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Tamara E King
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA.,Center of Excellences in the Neurosciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Meghan May
- Department of Biomedical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
| |
Collapse
|
17
|
Weitzel T, Aylwin M, Martínez-Valdebenito C, Jiang J, Munita JM, Thompson L, Abarca K, Richards AL. Imported scrub typhus: first case in South America and review of the literature. Trop Dis Travel Med Vaccines 2018; 4:10. [PMID: 30140442 PMCID: PMC6097283 DOI: 10.1186/s40794-018-0070-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scrub typhus is a neglected vector-borne zoonosis causing life-threatening illnesses, endemic in the Asian-Pacific region and, as recently discovered, in southern Chile. Scrub typhus is rarely reported in travelers, most probably due to the lack of clinical experience and diagnostic tests in non-endemic countries. We report the first case of imported scrub typhus in South America. CASE PRESENTATION A 62-year-old tourist from South Korea presented severely ill with fever, rash, and eschar in Santiago, Chile. Laboratory exams showed thrombocytopenia and elevated inflammation parameters, hepatic enzymes, and LDH. With the clinical suspicion of scrub typhus, empirical treatment with doxycycline was initiated and the patient recovered rapidly and without complications. The diagnosis was confirmed by IgM serology and by real-time PCR, which demonstrated infection with Orientia tsutsugamushi (Kawasaki clade). CONCLUSIONS Only due to the emerging clinical experience with endemic South American scrub typhus and the recent implementation of appropriate diagnostic techniques in Chile, were we able to firstly identify and adequately manage a severe case of imported scrub typhus in South America. Physicians attending febrile travelers need to be aware of this rickettsiosis, since it requires prompt treatment with doxycycline to avoid complications.
Collapse
Affiliation(s)
- Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Av. Vitacura, 5951 Santiago, Chile
- Servicio de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Mabel Aylwin
- Servicio de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Constanza Martínez-Valdebenito
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD USA
| | - Jose Manuel Munita
- Servicio de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Luis Thompson
- Servicio de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Katia Abarca
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Allen L. Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
18
|
Identification and characterization of a calcium dependent bacillopeptidase from Bacillus subtilis CFR5 with novel kunitz trypsin inhibitor degradation activity. Food Res Int 2018; 103:263-272. [DOI: 10.1016/j.foodres.2017.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/24/2022]
|
19
|
Siahmoshteh F, Siciliano I, Banani H, Hamidi-Esfahani Z, Razzaghi-Abyaneh M, Gullino ML, Spadaro D. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. Int J Food Microbiol 2017; 254:47-53. [DOI: 10.1016/j.ijfoodmicro.2017.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 05/15/2017] [Indexed: 11/15/2022]
|
20
|
Pathobio-molecular Identification of Trichoderma sp. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Hassan GM, El-Feky ZA, Eissa EA, Teleb AA. Rapid diagnosis of virulent Pasteurella multocida isolated from farm animals with clinical manifestation of pneumonia respiratory infection using 16S rDNA and KMT1 gene. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60979-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Enhanced production of l-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. ACTA ACUST UNITED AC 2015; 42:1039-47. [DOI: 10.1007/s10295-015-1624-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Abstract
Gluconobacter oxydans is capable of rapidly incomplete oxidation of many sugars and alcohols, which means the strain has great potential for industrial purposes. Strong promoters are one of the essential factors that can improve strain performance by overexpression of specific genes. In this study, a pipeline for screening strong promoters by proteomics analysis was established. Based on the procedure, a new strong promoter designated as PB932_2000 was identified in G. oxydans WSH-003. The promoter region was characterized based on known genome sequence information using BPROM. The strength of PB932_2000 was further assessed by analysis of enhanced green fluorescent protein (egfp) expression and comparison with egfp expression by two commonly used strong promoters, PE. coli_tufB and PG. oxydans_tufB. Both quantitative real-time PCR and fluorescence intensities for egfp gene expression showed that PB932_2000 promoter is stronger than the other two. Overexpression of d-sorbitol dehydrogenase (sldh) by PB932_2000 in G. oxydans WSH-003 enhanced the titer and productivity of l-sorbose synthesis from d-sorbitol by 12.0 % and 33.3 %, respectively. These results showed that proteomics analysis is an efficient way to identify strong promoters. The isolated promoter PB932_2000 could further facilitate the metabolic engineering of G. oxydans.
Collapse
|
23
|
Tripoli metallo-β-lactamase-1 (TMB-1)-producing Acinetobacter spp. with decreased resistance to imipenem in Japan. Antimicrob Agents Chemother 2014; 58:2477-8. [PMID: 24449775 DOI: 10.1128/aac.01790-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Senthil R, Angel KJ, Malathi R, Venkatesan D. Isolation, identification and computational studies on Pseudomonas aeruginosa sp. strain MPC1 in tannery effluent. Bioinformation 2011; 6:187-90. [PMID: 21738311 PMCID: PMC3124803 DOI: 10.6026/97320630006187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/07/2011] [Indexed: 11/23/2022] Open
Abstract
A study about isolation, identification and analysis of bacteria in waste water. Here the tannery effluent used as a sample for the entire analysis. A bacterial strain, designated MPC1 was isolated from a waste water sample collected from tannery effluent, Trichy, India and identified using a molecular approach. On the basis of the bacterial 16s rRNA gene sequence phylogeny and comparison of this gene sequence with sequence in RNA sequence database, it is considered that isolate is closely related to members of the Pseudomonas aeruginosa Sp. Phylogenetic and molecular evolutionary analyses were conducted using MEGA. Identification of regulatory elements and Transcription Factor with their binding sites in 16S rRNA gene of Pseudomonas aeruginosa mpc1 was performed using BPROM tool. The sequence of 16s rRNA (Pseudomonas aeruginosa sp MPC 1) is submitted to Genbank in NCBI database (Ac.No-JF708077).
Collapse
Affiliation(s)
- Renganathan Senthil
- Department of Bioinformatics, Marudupandiyar Institutions, Thanjavur-613403, TamilNadu, India
| | - Kanagamani Jini Angel
- Department of Bioinformatics, Marudupandiyar Institutions, Thanjavur-613403, TamilNadu, India
| | - Ravi Malathi
- Department of Bioinformatics, Marudupandiyar Institutions, Thanjavur-613403, TamilNadu, India
| | - Dhanapal Venkatesan
- Department of Bioinformatics, Marudupandiyar Institutions, Thanjavur-613403, TamilNadu, India
| |
Collapse
|
25
|
Singh BR, Al-Khedhairy AA, Alarifi SA, Musarrat J. Regulatory elements in the 5'region of 16SrRNA gene of Bacillus sp. strain SJ-101. Bioinformation 2009; 3:375-80. [PMID: 19759811 PMCID: PMC2732031 DOI: 10.6026/97320630003375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/01/2009] [Accepted: 04/18/2009] [Indexed: 11/23/2022] Open
Abstract
Advancement in bioinformatics with the development of computational tools has enabled the in-silico prediction and identification of transcription regulatory factors and other genetic elements with great ease. In this study, computational analysis of sequence homology of 546 bp 5' region of 16SrRNA gene of Bacillus sp. strain SJ-101 resulted in identification of promoter-like sequences within the rrn gene. Using BPROM tool, the regulatory motifs like -35 and -10 boxes were mapped at 392 and 411 positions, respectively. Furthermore, the cis-acting elements as the binding sites for transcription factors (TF) cpxR and argR were identified at positions 413 and 416 at the upstream of an open reading frame (ORF). The probable functions of the putative TFs were predicted through the Uni-Prot/Swiss-Prot protein database. Search for the Shine-Dalgarno sequence (SD) found the presence of highly conserved SD sequence (AATACC), and a short 42 bp coding sequence/ORF bounded with characteristic transcription start site (AAC) and a stop codon (TGA) at positions 426 and 465 downstream to the promoter elements. A 13 amino acid long translation product of a short ORF has exhibited 100% homology with protein sequences of Bacillus spp., while showing some degree of polymorphism with other reference strains. The comparative homology of the small protein exhibited maximum similarity with Prolyl-4 hydroxylase of Chlamydomonas reinhardtii with 4.11 ZSCORE. The highly conserved regulatory elements and the putative ORF predicted within the 16SrRNA gene may help understand the role of relatively unexplored short ORFs within rrn operon, and their functional products in genetic regulatory mechanisms in eubacteria.
Collapse
Affiliation(s)
- Braj R Singh
- DNA Research Chair Program, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | | | | | | |
Collapse
|