1
|
Huynh PN, Cheng C. Spatial-temporal comparison of Eph/Ephrin gene expression in ocular lenses from aging and knockout mice. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410860. [PMID: 38984128 PMCID: PMC11182306 DOI: 10.3389/fopht.2024.1410860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 07/11/2024]
Abstract
Cataracts, defined as any opacity in the transparent ocular lens, remain the leading cause of blindness and visual impairment in the world; however, the etiology of this pathology is not fully understood. Studies in mice and humans have found that the EphA2 receptor and the ephrin-A5 ligand play important roles in maintaining lens homeostasis and transparency. However, due to the diversity of the family of Eph receptors and ephrin ligands and their promiscuous binding, identifying functional interacting partners remains a challenge. Previously, 12 of the 14 Ephs and 8 of 8 ephrins in mice were characterized to be expressed in the mouse lens. To further narrow down possible genes of interest in life-long lens homeostasis, we collected and separated the lens epithelium from the fiber cell mass and isolated RNA from each compartment in samples from young adult and middle-aged mice that were either wild-type, EphA2-/- (knockout), or ephrin-A5 -/- . Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was implemented to compare transcript levels of 33 Eph and ephrin gene variants in each tissue compartment. Our results show that, of the Eph and ephrin variants screened, 5 of 33 showed age-related changes, and 2 of 33 showed genotype-related changes in lens epithelium. In the isolated fibers, more dynamic gene expression changes were observed, in which 12 of 33 variants showed age-related changes, and 6 of 33 showed genotype-related changes. These data allow for a more informed decision in determining mechanistic leads in Eph-ephrin-mediated signaling in the lens.
Collapse
Affiliation(s)
- Peter N Huynh
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Murugan S, Cheng C. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Front Cell Dev Biol 2022; 10:852236. [PMID: 35295853 PMCID: PMC8918484 DOI: 10.3389/fcell.2022.852236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
The eye lens is responsible for fine focusing of light onto the retina, and its function relies on tissue transparency and biomechanical properties. Recent studies have demonstrated the importance of Eph-ephrin signaling for the maintenance of life-long lens homeostasis. The binding of Eph receptor tyrosine kinases to ephrin ligands leads to a bidirectional signaling pathway that controls many cellular processes. In particular, dysfunction of the receptor EphA2 or the ligand ephrin-A5 lead to a variety of congenital and age-related cataracts, defined as any opacity in the lens, in human patients. In addition, a wealth of animal studies reveal the unique and overlapping functions of EphA2 and ephrin-A5 in lens cell shape, cell organization and patterning, and overall tissue optical and biomechanical properties. Significant differences in lens phenotypes of mouse models with disrupted EphA2 or ephrin-A5 signaling indicate that genetic modifiers likely affect cataract phenotypes and progression, suggesting a possible reason for the variability of human cataracts due to Eph-ephrin dysfunction. This review summarizes the roles of EphA2 and ephrin-A5 in the lens and suggests future avenues of study.
Collapse
|
3
|
Cheng C, Wang K, Hoshino M, Uesugi K, Yagi N, Pierscionek B. EphA2 Affects Development of the Eye Lens Nucleus and the Gradient of Refractive Index. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 34978559 PMCID: PMC8742528 DOI: 10.1167/iovs.63.1.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose Our studies in mouse eye lenses demonstrate that ephrin-A5 and EphA2 are needed for normal epithelial cells and lens transparency. We sought to determine whether EphA2 and ephrin-A5 are important for lens morphometrics, nucleus formation, and refractive index. Methods We performed tissue morphometric measurements, electron microscopy, Western blots, and interferometric measurements using an X-ray synchrotron beam source to measure the gradient of refractive index (GRIN) to compare mouse lenses with genetic disruption of EphA2 or ephrin-A5. Results Morphometric analysis revealed that although there is no change in the overall lens volume, there is a change in lens shape in both EphA2-/- lenses and ephrin-A5-/- lenses. Surprisingly, EphA2-/- lenses had small and soft lens nuclei different from hard lens nuclei of control lenses. SEM images revealed changes in cell morphology of EphA2-/- fiber cells close to the center of the lens. Inner EphA2-/- lens fibers had more pronounced tongue-and-groove interdigitations and formed globular membrane morphology only in the deepest layers of the lens nucleus. We did not observe nuclear defects in ephrin-A5-/- lenses. There was an overall decrease in magnitude of refractive index across EphA2-/- lenses, which is most pronounced in the nucleus. Conclusions This work reveals that Eph-ephrin signaling plays a role in fiber cell maturation, nuclear compaction, and lens shape. Loss of EphA2 disrupts the nuclear compaction resulting in a small lens nucleus. Our data suggest that Eph-ephrin signaling may be required for fiber cell membrane reorganization and compaction and for establishing a normal GRIN.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kehao Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan
| | - Barbara Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, United Kingdom
| |
Collapse
|
4
|
Cheng C, Gao J, Sun X, Mathias RT. Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance. Front Physiol 2021; 12:772276. [PMID: 34899394 PMCID: PMC8656704 DOI: 10.3389/fphys.2021.772276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
The avascular eye lens generates its own microcirculation that is required for maintaining lifelong lens transparency. The microcirculation relies on sodium ion flux, an extensive network of gap junction (GJ) plaques between lens fiber cells and transmembrane water channels. Disruption of connexin proteins, the building blocks of GJs, or aquaporins, which make up water and adhesion channels, lead to lens opacification or cataracts. Recent studies have revealed that disruption of Eph-ephrin signaling, in particular the receptor EphA2 and the ligand ephrin-A5, in humans and mice lead to congenital and age-related cataracts. We investigated whether changes in lens transparency in EphA2 or ephrin-A5 knockout (–/–) mice is related to changes in GJ coupling and lens fluid and ion homeostasis. Immunostaining revealed changes in connexin 50 (Cx50) subcellular localization in EphA2–/– peripheral lens fibers and alteration in aquaporin 0 (Aqp0) staining patterns in ephrin-A5–/– and EphA2–/– inner mature fiber cells. Surprisingly, there was no obvious change in GJ coupling in knockout lenses. However, there were changes in fiber cell membrane conductance and intracellular voltage in knockout lenses from 3-month-old mice. These knockout lenses displayed decreased conductance of mature fiber membranes and were hyperpolarized compared to control lenses. This is the first demonstration that the membrane conductance of lens fibers can be regulated. Together these data suggest that EphA2 may be needed for normal Cx50 localization to the cell membrane and that conductance of lens fiber cells requires normal Eph-ephrin signaling and water channel localization.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Xiurong Sun
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
5
|
Li D, Han X, Zhao Z, Lu Y, Yang J. Functional analysis of deleterious EPHA2 SNPs in lens epithelial cells. Mol Vis 2021; 27:403-414. [PMID: 34267496 PMCID: PMC8254660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/29/2021] [Indexed: 10/29/2022] Open
Abstract
Purpose Ephrin (Eph) receptor A2 (EPHA2) polymorphism has been associated with age-related cataract (ARC) in different populations worldwide, but the mechanisms by which this polymorphism results in the development of ARC are unclear. Here, we chose four EPHA2 single nucleotide polymorphisms (SNPs; rs35903225, rs145592908, rs137853199, and rs116506614) and studied their function in human lens epithelial cells (LECs). Methods The four EPHA2 mutants were overexpressed using lentiviral transduction in human LECs. Cells expressing wild-type (WT) and mutated EPHA2 were subjected to quantitative PCR (qPCR), western blot, immunoprecipitation (IP), and transwell migration assay. MG132 and chloroquine were used to inhibit the degradation of the WT and mutated EPHA2. The structural changes induced by rs137853199 were predicted and optimized using Schrödinger software. IP-mass spectrometry (IP-MS) was performed to examine the proteins that directly interact with WT and rs137853199 EPHA2. Sanger sequencing was performed to determine the frequency of rs137853199 in 184 patients with ARC (73 cortical cataracts, 56 nuclear cataracts, and 55 posterior subcapsular cataracts) and 49 normal controls. Results Compared with the WT and the other three mutations, the rs137853199 mutation specifically resulted in a significant decrease in the expression of EPHA2. We identified that EPHA2 rs137853199 is degraded via the ubiquitin-proteasomal pathway through a lysine-48 (K48) residue linkage. Furthermore, the knockdown of EPHA2 reduced cell migration; while the overexpression of WT EPHA2 rescued this defect, the overexpression of rs137853199 EPHA2 did not. In addition, in cells overexpressing rs137853199 EPHA2, the expression of β-catenin, a key protein that regulates cell migration, significantly decreased. We predicted that rs137853199 would induce a conformational change at a linker position in the carboxyl terminal of EPHA2. The IP-MS results showed that the main molecular functions of the proteins that specifically bind WT or rs137853199 EPHA2 are binding and catalysis, while the main protein class is the protein-modifying enzyme. Finally, we discovered that the minor allele frequency of rs137853199 was significantly higher in cortical cataract patients than it was in normal controls. Conclusions In summary, these findings suggest a mechanism by which a point mutation in EPHA2 disrupts protein stability, expedites protein degradation, and decreases cell mobility. Importantly, this mutant is associated with cortical cataracts.
Collapse
Affiliation(s)
- Dan Li
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaoyan Han
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhennan Zhao
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jin Yang
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
6
|
Li D, Han X, Zhao Z, Lu Y, Yang J. Functional analysis of deleterious EPHA2 SNPs in lens epithelial cells. Mol Vis 2021; 27:384-395. [PMID: 34220184 PMCID: PMC8219505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/21/2021] [Indexed: 11/03/2022] Open
Abstract
Purpose Ephrin (Eph) receptor A2 (EPHA2) polymorphism has been associated with age-related cataract (ARC) in different populations worldwide, but the mechanisms by which this polymorphism results in the development of ARC are unclear. Here, we chose four EPHA2 single nucleotide polymorphisms (SNPs; rs35903225, rs145592908, rs137853199, and rs116506614) and studied their function in human lens epithelial cells (LECs). Methods The four EPHA2 mutants were overexpressed using lentiviral transduction in human LECs. Cells expressing wild-type (WT) and mutated EPHA2 were subjected to quantitative PCR (qPCR), western blot, immunoprecipitation (IP), and transwell migration assay. MG132 and chloroquine were used to inhibit the degradation of the WT and mutated EPHA2. The structural changes induced by rs137853199 were predicted and optimized using Schrödinger software. IP-mass spectrometry (IP-MS) was performed to examine the proteins that directly interact with WT and rs137853199 EPHA2. Sanger sequencing was performed to determine the frequency of rs137853199 in 184 patients with ARC (73 cortical cataracts, 56 nuclear cataracts, and 55 posterior subcapsular cataracts) and 49 normal controls. Results Compared with the WT and the other three mutations, the rs137853199 mutation specifically resulted in a significant decrease in the expression of EPHA2. We identified that EPHA2 rs137853199 is degraded via the ubiquitin-proteasomal pathway through a lysine-48 (K48) residue linkage. Furthermore, the knockdown of EPHA2 reduced cell migration; while the overexpression of WT EPHA2 rescued this defect, the overexpression of rs137853199 EPHA2 did not. In addition, in cells overexpressing rs137853199 EPHA2, the expression of β-catenin, a key protein that regulates cell migration, significantly decreased. We predicted that rs137853199 would induce a conformational change at a linker position in the carboxyl terminal of EPHA2. The IP-MS results showed that the main molecular functions of the proteins that specifically bind WT or rs137853199 EPHA2 are binding and catalysis, while the main protein class is the protein-modifying enzyme. Finally, we discovered that the minor allele frequency of rs137853199 was significantly higher in cortical cataract patients than it was in normal controls. Conclusions In summary, these findings suggest a mechanism by which a point mutation in EPHA2 disrupts protein stability, expedites protein degradation, and decreases cell mobility. Importantly, this mutant is associated with cortical cataracts.
Collapse
Affiliation(s)
- Dan Li
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,NHC Key Laboratory of Myopia, Fudan University, Fudan China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaoyan Han
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,NHC Key Laboratory of Myopia, Fudan University, Fudan China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhennan Zhao
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,NHC Key Laboratory of Myopia, Fudan University, Fudan China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,NHC Key Laboratory of Myopia, Fudan University, Fudan China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jin Yang
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,NHC Key Laboratory of Myopia, Fudan University, Fudan China,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
7
|
Bennett TM, M’Hamdi O, Hejtmancik JF, Shiels A. Germ-line and somatic EPHA2 coding variants in lens aging and cataract. PLoS One 2017; 12:e0189881. [PMID: 29267365 PMCID: PMC5739433 DOI: 10.1371/journal.pone.0189881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive.
Collapse
Affiliation(s)
- Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Oussama M’Hamdi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Eph-ephrin bidirectional signaling is essential for eye lens transparency in humans and mice. Our previous studies in mouse lenses demonstrate that ephrin-A5 is mainly expressed in the anterior epithelium, where it is required for maintaining the anterior epithelial monolayer. In contrast, EphA2 is localized in equatorial epithelial and fiber cells where it is essential for equatorial epithelial and fiber cell organization and hexagonal cell shape. Immunostaining of lens epithelial and fiber cells reveals that EphA2 and ephrin-A5 are also co-expressed in anterior fiber cell tips, equatorial epithelial cells and newly formed lens fibers, although they are not precisely colocalized. Due to this complex expression pattern and the promiscuous interactions between Eph receptors and ephrin ligands, as well as their complex bidirectional signaling pathways, cataracts in ephrin-A5(-/-) or EphA2(-/-) lenses may arise from loss of function or abnormal signaling mechanisms. To test whether abnormal signaling mechanisms may play a role in cataractogenesis in ephrin-A5(-/-) or EphA2(-/-) lenses, we generated EphA2 and ephrin-A5 double knockout (DKO) mice. We compared the phenotypes of EphA2(-/-) and ephrin-A5(-/-) lenses to that of DKO lenses. DKO lenses displayed an additive lens phenotype that was not significantly different from the two single KO lens phenotypes. Similar to ephrin-A5(-/-) lenses, DKO lenses had abnormal anterior epithelial cells leading to a large mass of epithelial cells that invade into the underlying fiber cell layer, directly resulting in anterior cataracts in ephrin-A5(-/-) and DKO lenses. Yet, similar to EphA2(-/-) lenses, DKO lenses also had abnormal packing of equatorial epithelial cells with disorganized meridional rows, lack of a lens fulcrum and disrupted fiber cells. The DKO lens phenotype rules out abnormal signaling by EphA2 in ephrin-A5(-/-) lenses or by ephrin-A5 in EphA2(-/-) lenses as possible cataract mechanisms. Thus, these results indicate that EphA2 and ephrin-A5 do not form a lens receptor-ligand pair, and that EphA2 and ephrin-A5 have other binding partners in the lens to help align differentiating equatorial epithelial cells or maintain the anterior epithelium, respectively.
Collapse
|
9
|
Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK. In silico analysis of the deleterious nsSNPs (missense) in the homeobox domain of humanHOXB13gene responsible for hereditary prostate cancer. Chem Biol Drug Des 2017; 90:188-199. [DOI: 10.1111/cbdd.12938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | - Eu Chang Hwang
- Department of Urology; Chonnam National University Hospital; Gwangju Korea
| | - Taek Won Kang
- Department of Urology; Chonnam National University Hospital; Gwangju Korea
| | - Dong Deuk Kwon
- Department of Urology; Chonnam National University Hospital; Gwangju Korea
| | - Kwangsung Park
- Department of Urology; Chonnam National University Hospital; Gwangju Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy; Chonnam National University Hospital; Gwangju Korea
| | - Vinoth-Kumar Lakshmanan
- Department of Biomedical Sciences; Chonnam National University Medical School; Gwangju Korea
| |
Collapse
|
10
|
The Polymorphisms with Cataract Susceptibility Impair the EPHA2 Receptor Stability and Its Cytoprotective Function. J Ophthalmol 2015; 2015:401894. [PMID: 26664742 PMCID: PMC4668318 DOI: 10.1155/2015/401894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Despite accumulating evidence revealing susceptibility genes for age-related cataract, its pathophysiology leading to visual impairment at the cellular and molecular level remains poorly understood. Recent bioinformatic studies uncovered the association of two single nucleotide polymorphisms in human EPHA2, rs2291806 and rs1058371, with age-related cataract. Here we investigated the role of EPHA2 in counteracting oxidative stress-induced apoptosis of lens epithelial cells. The cataract-associated missense mutations resulted in the destabilization of EPHA2 receptor without altering the mRNA transcription. The cytoprotective and antiapoptotic function of EPHA2 in lens epithelial cells was abolished by the functional polymorphisms. Furthermore, our results suggest that the downstream signaling of activated EPHA2 promotes the antioxidative capacity of lens epithelial cells to eradicate the overproduction of reactive oxygen species. In contrast, the overexpression of EPHA2 with nonsynonymous mutations in the lens epithelial cells offered limited antioxidative protection against oxidative stress. Thus, our study not only sheds the light on the potential cytoprotective function of EPHA2 signaling in lens but also provides the cellular mechanisms underlying the pathogenesis of age-related cataract.
Collapse
|
11
|
Hamada N, Fujimichi Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett 2015; 368:262-74. [DOI: 10.1016/j.canlet.2015.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
12
|
Cheng C, Ansari MM, Cooper JA, Gong X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 2013; 140:4237-45. [PMID: 24026120 DOI: 10.1242/dev.100727] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2(-/-) mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2(-/-) cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2(-/-) lenses. Src(-/-) equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
13
|
Yang J, Luo J, Zhou P, Fan Q, Luo Y, Lu Y. Association of the ephreceptor tyrosinekinase-type A2 (EPHA2) gene polymorphism rs3754334 with age-related cataract risk: a meta-analysis. PLoS One 2013; 8:e71003. [PMID: 23976972 PMCID: PMC3745390 DOI: 10.1371/journal.pone.0071003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent clinical studies have assessed the association of various polymorphisms on the ephreceptor tyrosinekinase-type A2 (EPHA2) with the risk for age-related cataract in populations of different ethnic/racial backgrounds, but inconsistent results have been obtained. OBJECTIVE This meta-analysis aimed to identify if any polymorphism(s) might be commonly present in different ethnic/racial populations in association with the age-related cataract risk. METHODS The PubMed and Web of Science databases (up to December 1, 2012) were searched for clinical studies on the association of EPHA2 polymorphisms with the risk for age-related cataract. The polymorphisms that were assessed in all eligible studies were analyzed for their association with the risk for age-related cataract using different models. RESULTS Three studies were identified, which were conducted, respectively, on white Americans in the Unites States and on Asians in Indian and China. The polymorphism, rs3754334, was the only one studied in all these three studies and was therefore the focus of this meta-analysis. No publication bias or heterogeneity was found. Our analysis results demonstrated that rs3754334 was associated with the risk of any cataracts in the recessive (OR = 1.202, 95% CI: 1.051-1.375, P = 0.007) and Codominant (OR = 1.194, 95% CI: 1.035-1.378, P = 0.015) models, but its association with cortical or nuclear phenotype of age-related cataract was not evident. CONCLUSION Polymorphism, rs3754334, might be a variant on the EPHA2 gene that is commonly associated with the risk for age-related cataract in different ethnical and geographical populations.
Collapse
Affiliation(s)
- Jin Yang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Health Statistics and Social Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Peng Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Qi Fan
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Abediankenari S, Jeivad F. Epidermal Growth Factor Receptor Gene Polymorphisms and Gastric Cancer in Iran. Asian Pac J Cancer Prev 2013; 14:3187-90. [DOI: 10.7314/apjcp.2013.14.5.3187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Jahandideh S, Zhi D. Systematic investigation of predicted effect of nonsynonymous SNPs in human prion protein gene: a molecular modeling and molecular dynamics study. J Biomol Struct Dyn 2013; 32:289-300. [PMID: 23527686 DOI: 10.1080/07391102.2012.763216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonsynonymous mutations in the human prion protein (HuPrP) gene contribute to the conversion of HuPrP(C) to HuPrP(Sc) and amyloid formation which in turn leads to prion diseases such as familial Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. In order to better understand and predict the role of HuPrP mutations, we developed the following procedure: first, we consulted the Human Genome Variation database and dbSNP databases, and we reviewed literature for the retrieval of aggregation-related nsSNPs of the HuPrP gene. Next, we used three different methods - Polymorphism Phenotyping (PolyPhen), PANTHER, and Auto-Mute - to predict the effect of nsSNPs on the phenotype. We compared the predictions against experimentally reported effects of these nsSNPs to evaluate the accuracy of the three methods: PolyPhen predicted 17 out of 22 nsSNPs as "probably damaging" or "possibly damaging"; PANTHER predicted 8 out of 22 nsSNPs as "Deleterious"; and Auto-Mute predicted 9 out of 20 nsSNPs as "Disease". Finally, structural analyses of the native protein against mutated models were investigated using molecular modeling and molecular dynamics (MD) simulation methods. In addition to comparing predictor methods, our results show the applicability of our procedure for the prediction of damaging nsSNPs. Our study also elucidates the obvious relationship between predicted values of aggregation-related nsSNPs in HuPrP gene and molecular modeling and MD simulations results. In conclusion, this procedure would enable researchers to select outstanding candidates for extensive MD simulations in order to decipher more details of HuPrP aggregation. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:34.
Collapse
Affiliation(s)
- Samad Jahandideh
- a Section on Statistical Genetics, Department of Biostatistics , School of Public Health, University of Alabama at Birmingham , Birmingham , AL , 35294 , USA
| | | |
Collapse
|