1
|
Meng X, Wu Z, Jiang C, Guan D, Zhang N, Jiang H, Shen Q, Qian K, Wang J. Identification and characterization of glutathione S-transferases and their potential roles in detoxification of abamectin in the rice stem borer, Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105050. [PMID: 35249650 DOI: 10.1016/j.pestbp.2022.105050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The glutathione S-transferases (GSTs) are a kind of metabolic enzymes and participate in the detoxification metabolism of xenobiotics in various organisms. In insects, GSTs play important roles in the development of insecticide resistance and antioxidant protection. The rice stem borer Chilo suppressalis is one of the most damaging pests in rice and has developed high levels of resistance to abamectin in many areas of China, whereas the potential resistance mechanisms of C suppressalis to abamectin are still unclear. In the present study, a total of 23 CsGSTs genes were identified from the C. suppressalis transcriptome and genome, including 21 cytosolic and two microsomal CsGSTs. The cytosolic CsGSTs were further classified into seven categories based on phylogenetic analysis, and their sequence characteristics and genome structures were also analyzed. Synergism study revealed that the susceptibility of C. suppressalis to abamectin was increased significantly when the CsGSTs were inhibited by diethyl maleate (DEM). Sixteen CsGSTs genes were up-regulated in C. suppressalis larvae after treatment with abamectin, among which four CsGSTs genes including CsGSTe2, CsGSTe4, CsGSTo4 and CsGSTu1 were significantly induced in the midgut and fat body tissues. These results indicated that CsGSTs were associated with the detoxification of C. suppressalis to abamectin, and CsGSTe2, CsGSTe4, CsGSTo4 and CsGSTu1 might play important roles in the insecticide detoxification or antioxidant protection in C. suppressalis. Our present study provides valuable information on C. suppressalis GSTs, and are helpful in understanding the contributions of GSTs in abamectin detoxification in C. suppressalis and other insects.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyun Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Alharbi A, Alshaghdali K, Saeed A. Molecular docking based design of Inhibitors for viral Non-Nucleosidase as potential anti-retroviral agents. Bioinformation 2020; 16:736-741. [PMID: 34675458 PMCID: PMC8503775 DOI: 10.6026/97320630016736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 11/23/2022] Open
Abstract
Reverse Transcriptase (RT) inhibitors are highly promising agents for use as an effective anti-retroviral therapy (HAART) which is typically a combination of three or four antiretroviral drugs. We used direct drug design approach to discover new chemical entities for the target protein. The validated template of the protein targeting reverse transcriptase PDB ID 1JKH was extracted for three sites hydrophobic, steric, and electronic parameters explain the interactions at the active site by the inhibitors. We used the Zinc library of compounds to explore the possible leads for HAART through RT inhibition. We report 12 new chemical entities with possible activity against the targeted viral protein. These leads will provide new therapeutic means in antiretroviral therapy.
Collapse
Affiliation(s)
- Ahmed Alharbi
- Collage of Applied Medical Sciences, Department of Laboratory Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Khalid Alshaghdali
- Collage of Applied Medical Sciences, Department of Laboratory Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Amir Saeed
- Collage of Applied Medical Sciences, Department of Laboratory Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum, Sudan
| |
Collapse
|
3
|
Saeed M, Kushwaha V, Faisal SM, Verma R, Ahmad I, Mustafa H, Ganash M, Kamal MA, Ashraf GM. A Study on Serological Reactivity Profile of Different Antigen Preparations with Bancroftian filariasis Human Infection Sera. Protein Pept Lett 2020; 27:841-850. [PMID: 32096736 DOI: 10.2174/0929866527666200225123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphatic Filariasis (LF) is one of the incapacitating and mosquito-borne sicknesses that on progression may prompt a few recognizable types of clutters like extreme lymphedema, hydrocele, and elephantiasis. METHODS Antigenic preparations of B. malayi adult (BmA), S. cervi adult parasites and microfilariae (mf) total parasite extract were used to analyze the serological reactivity profile with human infectious sera collected from endemic areas of Bancroftian filariasis by performing Western blot and ELISA analysis. Sera from healthy human subjects were also included in the study to determine the variation incurred in the reactivity due to the filariasis infection. Gelelectrophoresis analysis of the crude-extract of BmA revealed seven protein bands while more than ten bands were recognized in S. cervi. RESULTS our results represent a clear variation in protein patterns among the crude-antigens. ELISA results showed highest prevalence of IgG, IgM and IgG4 antibodies against all antigen preparations when recorded among microfilaraemic chronic infected patients. In both the antigenic preparations, the positive reactions were in the order of microfilaraemic>endemic normal>chronic>acute>nonendemic normal subjects. All sera of Mf+ patients were uniformly positive, while sera of both chronic and endemic normal subjects showed less reactivity. CONCLUSION In the present study, we endeavoured to establish the extent of cross-reactivity of antigens derived from animal filarial parasites such as B. malayi and S. cervi with W. bancrofti filariasis sera of human patients. Besides, we further analyzed antibody-isotype profile of IgG, IgG4 and IgM in various human infection sera of bancroftian filarial subjects reactive to heterologous parasite antigens derived from adult worms of S. cervi from bovine and B. malayi from bovine and jirds.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences University of Hail, Hail, Saudi Arabia.,Department of Biosciences, Integral University, Lucknow, India
| | - Vikas Kushwaha
- Department of Zoology, Panjab University, Chandigarh, India
| | - Syed Mohd Faisal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Richa Verma
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia,Research Center for Advanced Material Sciences, King Khalid University, Abha, Saudi Arabia,Department of Microbiology, King George's Medical University, Lucknow, India
| | - Huma Mustafa
- Council of Science and Technology, Lucknow, UP, India
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia,Novel Global Community Educational Foundation, Australia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Malik A, Afaq S, Gamal BE, Ellatif MA, Hassan WN, Dera A, Noor R, Tarique M. Molecular docking and pharmacokinetic evaluation of natural compounds as targeted inhibitors against Crz1 protein in Rhizoctonia solani. Bioinformation 2019; 15:277-286. [PMID: 31285645 PMCID: PMC6599437 DOI: 10.6026/97320630015277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 11/29/2022] Open
Abstract
Crz1p regulates Calcineurin, a serine-threonine-specific protein phosphatase, in Rhizoctonia solani. It has attracted consideration as a novel target of antifungal therapy based on studies in numerous pathogenic fungi, including, Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. To investigate whether Calcineurin can be a useful target for the treatment of Crz1 protein in R. solani causing wet root rot in Chickpea. The work presented here reports the in-silico studies of Crz1 protein against natural compounds. This study Comprises of quantitative structure-toxicity relationship (QSTR) and quantitative structure-activity relationship (QSAR). All compounds showed high binding energy for Crz1 protein through molecular docking. Further, a pharmacokinetic study revealed that these compounds had minimal side effects. Biological activity spectrum prediction of these compounds showed potential antifungal properties by showing significant interaction with Crz1. Hence, these compounds can be used for the prevention and treatment of wet root rot in Chickpea.
Collapse
Affiliation(s)
- Ajit Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Basiouny El Gamal
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Biochemistry,Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Waleed N Hassan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed Dera
- Departments of Clinical Laboratory Science, College of Applied MedicalScience, King Khalid University, Abha, Saudi Arabia
| | - Rana Noor
- 5Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Mohammed Tarique
- Center for InterdisciplinaryResearch in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
5
|
Venkata Satya Chekkara SP, Ranjan Kumar P. Virtual screening and docking of lead like molecules against Glutathione-S-Transferase protein from Brugia malayi. Bioinformation 2018; 14:554-559. [PMID: 31223214 PMCID: PMC6563667 DOI: 10.6026/97320630014554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
Glutathione-S-transferase(s) (GST) is an important chemotherapeutic target in lymphatic filarasis caused by Brugia malayi and Wuchereria bancrofti. It has been playing an important role as major detoxification enzyme and help in intracellular transportation of hydrophobic substrates. Therefore, it is of interest to screen GST from Brugia malayi with millions of known ligands at the ZINC database using AUTODOCK for the identification of potential inhibitors with improved binding characteristics. We report two potent inhibitors ZINC00179016 and ZINC08385519 which are the molecules of pyrrolidinedione and benzimidazole families respectively as potential inhibitors of GST from Brugia malayi with suitable binding properties.
Collapse
Affiliation(s)
| | - Priya Ranjan Kumar
- Department of Biotechnology, IMS Engineering College, Ghaziabad, Uttar Pradesh-201009, India
| |
Collapse
|
6
|
Mangiola S, Young ND, Sternberg PW, Strube C, Korhonen PK, Mitreva M, Scheerlinck JP, Hofmann A, Jex AR, Gasser RB. Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. Int J Parasitol 2014; 44:251-61. [PMID: 24487001 DOI: 10.1016/j.ijpara.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 01/09/2023]
Abstract
Parasitic nematodes cause diseases of major economic importance in animals. Key representatives are species of Dictyocaulus (=lungworms), which cause bronchitis (=dictyocaulosis, commonly known as "husk") and have a major adverse impact on the health of livestock. In spite of their economic importance, very little is known about the immunomolecular biology of these parasites. Here, we conducted a comprehensive investigation of the adult transcriptome of Dictyocaulus filaria of small ruminants and compared it with that of Dictyocaulus viviparus of bovids. We then identified a subset of highly transcribed molecules inferred to be linked to host-parasite interactions, including cathepsin B peptidases, fatty-acid and/or retinol-binding proteins, β-galactoside-binding galectins, secreted protein 6 precursors, macrophage migration inhibitory factors, glutathione peroxidases, a transthyretin-like protein and a type 2-like cystatin. We then studied homologues of D. filaria type 2-like cystatin encoded in D. viviparus and 24 other nematodes representing seven distinct taxonomic orders, with a particular focus on their proposed role in immunomodulation and/or metabolism. Taken together, the present study provides new insights into nematode-host interactions. The findings lay the foundation for future experimental studies and could have implications for designing new interventions against lungworms and other parasitic nematodes. The future characterisation of the genomes of Dictyocaulus spp. should underpin these endeavours.
Collapse
Affiliation(s)
- Stefano Mangiola
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia.
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Andreas Hofmann
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia; Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Aaron R Jex
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia; Institute of Parasitology and Tropical Veterinary Medicine, Berlin, Germany.
| |
Collapse
|