1
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Honda JR, Hess T, Carlson R, Kandasamy P, Nieto Ramirez LM, Norton GJ, Virdi R, Islam MN, Mehaffy C, Hasan NA, Epperson LE, Hesser D, Alper S, Strong M, Flores SC, Voelker DR, Dobos KM, Chan ED. Nontuberculous Mycobacteria Show Differential Infectivity and Use Phospholipids to Antagonize LL-37. Am J Respir Cell Mol Biol 2020; 62:354-363. [PMID: 31545652 PMCID: PMC7055699 DOI: 10.1165/rcmb.2018-0278oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Comparisons of infectivity among the clinically important nontuberculous mycobacteria (NTM) species have not been explored in great depth. Rapid-growing mycobacteria, including Mycobacterium abscessus and M. porcinum, can cause indolent but progressive lung disease. Slow-growing members of the M. avium complex are the most common group of NTM to cause lung disease, and molecular approaches can now distinguish between several distinct species of M. avium complex including M. intracellulare, M. avium, M. marseillense, and M. chimaera. Differential infectivity among these NTM species may, in part, account for differences in clinical outcomes and response to treatment; thus, knowing the relative infectivity of particular isolates could increase prognostication accuracy and enhance personalized treatment. Using human macrophages, we investigated the infectivity and virulence of nine NTM species, as well as multiple isolates of the same species. We also assessed their capacity to evade killing by the antibacterial peptide cathelicidin (LL-37). We discovered that the ability of different NTM species to infect macrophages varied among the species and among isolates of the same species. Our biochemical assays implicate modified phospholipids, which may include a phosphatidylinositol or cardiolipin backbone, as candidate antagonists of LL-37 antibacterial activity. The high variation in infectivity and virulence of NTM strains suggests that more detailed microbiological and biochemical characterizations are necessary to increase our knowledge of NTM pathogenesis.
Collapse
Affiliation(s)
- Jennifer R. Honda
- Department of Biomedical Research, Center for Genes, Environment and Health, and
| | - Tamara Hess
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Rachel Carlson
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, Colorado
| | - Pitchaimani Kandasamy
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, Colorado
| | | | - Grant J. Norton
- Department of Biomedical Research, Center for Genes, Environment and Health, and
| | - Ravleen Virdi
- Department of Biomedical Research, Center for Genes, Environment and Health, and
| | - M. Nurul Islam
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Carolina Mehaffy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Nabeeh A. Hasan
- Department of Biomedical Research, Center for Genes, Environment and Health, and
| | - L. Elaine Epperson
- Department of Biomedical Research, Center for Genes, Environment and Health, and
| | - Danny Hesser
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Scott Alper
- Department of Biomedical Research, Center for Genes, Environment and Health, and
- Department of Immunology and Microbiology, and
| | - Michael Strong
- Department of Biomedical Research, Center for Genes, Environment and Health, and
| | - Sonia C. Flores
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado–Denver, Anschutz Medical Campus, Aurora, Colorado; and
| | - Dennis R. Voelker
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, Colorado
| | - Karen M. Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Edward D. Chan
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, Colorado
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado–Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado
| |
Collapse
|
3
|
Burugupalli S, Richardson MB, Williams SJ. Total synthesis and mass spectrometric analysis of a Mycobacterium tuberculosis phosphatidylglycerol featuring a two-step synthesis of (R)-tuberculostearic acid. Org Biomol Chem 2018; 15:7422-7429. [PMID: 28831486 DOI: 10.1039/c7ob01786c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the total synthesis of (R)-tuberculostearic acid-containing Mycobacterium tuberculosis phosphatidylglycerol (PG). The approach features a two-step synthesis of (R)-tuberculostearic acid, involving an (S)-citronellyl bromide linchpin, and the phosphoramidite-assisted assembly of the full PG structure. Collision-induced dissociation mass spectrometry of two chemically-synthesized PG acyl regioisomers revealed diagnostic product ions formed by preferential loss of carboxylate at the secondary (sn-2) position.
Collapse
Affiliation(s)
- Satvika Burugupalli
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia 3010.
| | - Mark B Richardson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia 3010.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia 3010.
| |
Collapse
|