1
|
Quinones D, Barrow M, Seidler K. Investigating the Impact of Ashwagandha and Meditation on Stress Induced Obesogenic Eating Behaviours. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-21. [PMID: 39254702 DOI: 10.1080/27697061.2024.2401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Obesity has been identified as a rapidly rising pandemic within the developed world, potentially increasing the risks of type 2 diabetes and cardiovascular disease. Various studies have identified a positive association between stress, elevated cortisol levels and obesity. Mechanisms of the stress response lead to hyperpalatable food preference and increased appetite through the activation of the HPA axis, elevated cortisol and the resulting interactions with the dopaminergic system, neuropeptide Y, ghrelin, leptin and insulin. The methodology of this review involved a Systematic Search of the Literature with a Critical Appraisal of papers considering ashwagandha, mediation and mindfulness in relation to mechanisms of the stress response. It incorporated 12 searches yielding 330 hits. A total of 51 studies met the inclusion criteria and were critically appraised with ARRIVE, SIGN50 and Strobe checklists. Data from the 51 studies was extracted, coded into key themes and summarized in a narrative analysis. Thematic analysis identified 4 key themes related to ashwagandha and 2 key themes related to meditation. Results provide an overview of evidence assessing the efficacy of ashwagandha and meditation in relation to weight loss interventions by supporting the stress response and the pathways highlighted. Results of Clinical studies indicate that ashwagandha supports weight loss through reduced stress, cortisol and food cravings. Pre-clinical studies also suggest that ashwagandha possesses the capacity to regulate food intake by improving leptin and insulin sensitivity and reducing addictive behaviors through dopamine regulation. Clinical studies on meditation indicate it may enhance a weight loss protocol by reducing the stress response, cortisol release and blood glucose and improving eating behaviors.
Collapse
Affiliation(s)
- Daniel Quinones
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Michelle Barrow
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| |
Collapse
|
2
|
Zhu K, Chen S, Qin X, Bai W, Hao J, Xu X, Guo H, Bai H, Yang Z, Wang S, Zhao Z, Ji T, Kong D, Zhang W. Exploring the therapeutic potential of cannabidiol for sleep deprivation-induced hyperalgesia. Neuropharmacology 2024; 249:109893. [PMID: 38428482 DOI: 10.1016/j.neuropharm.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.
Collapse
Affiliation(s)
- Kangsheng Zhu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China; Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Wanjun Bai
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Jie Hao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xiaolei Xu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Tengfei Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
3
|
Yadav A, Mishra RK. Withania somnifera ameliorates sexual arousal and impotence in stressed sexually sluggish male rats by modulating neurotransmitters and NO/cGMP/PDE5α pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116971. [PMID: 37532077 DOI: 10.1016/j.jep.2023.116971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psychological stress is a growing global threat to male sexual potency and erection efficiency. Withania somnifera (L.) Dunal (WS), also known as Ashwagandha, is a well-known Ayurvedic herb. The roots of Withania somnifera improve the body's ability to handle stress, strengthen the immune system, promote healthy ageing, and have aphrodisiac properties with male sexual stimulation effects. Despite its widespread acceptance as an Ayurvedic stress-relieving drug with beneficial effects on male reproductive health, Withania somnifera has yet to be studied for its potential role in improving the sexual arousal and erectile dysfunction of psychologically stressed sexually sluggish males. AIM OF THE STUDY To investigate the therapeutic effects of purified root powder of Withania somnifera on sexual behaviour and erectile efficiency in stressed sexually sluggish male rats. MATERIALS AND METHODS Sexually sluggish male rats were screened by premating tests after being exposed to a psychological stressor, restraint stress, 3 h/day for 30 days. Subsequently, these rats were treated with purified root powder of WS (150 or 300 mg/kg/day-PO) or sildenafil (5 mg/kg/day-PO) for 30 days. The rats were sacrificed after 24 h of the last treatment, and the effects on various factors related to sexual behaviour, penile histomorphology, serum hormones, and neurotransmitters associated with sexual arousal and penile erection were examined. RESULTS WS treatment improves prosexual and sexual behaviour in psychologically stressed sexually sluggish male rats by increasing non-contact erections and mounts, intromission, and ejaculation frequencies, while decreasing sexual exhaustion by decreasing post-ejaculation intervals and latencies. WS also modulates neurotransmitters and hormones associated with sexual desire and stress, including dopamine, serotonin, corticosterone, and prolactin. Additionally, there was also a dose-dependent increase in serum LH, FSH, and testosterone levels. The administration of WS to sexually sluggish rats resulted in significant improvements in penile histomorphology, specifically by increasing the ratio of smooth muscle (SM) to collagen. Furthermore, in sexually sluggish rats, WS treatment increased the expression of markers associated with penile erection facilitation, such as nNOS, eNOS, p-Akt, nitric oxide, acetylcholine, and cGMP. Notably, WS treatment decreased the expression of penile PDE5α in these rats in a dose-dependent manner. Remarkably, the therapeutic effects of WS are comparable to those of sildenafil. CONCLUSIONS Purified root powder of Withania somnifera was found to improve sexual arousal and erection efficiency in stressed, sexually sluggish male rats. This improvement was achieved by modulating the HPG and HPA axes as well as the NO/cGMP/PDE5α pathway involved in penile erection. Thus, our findings strongly support the potent therapeutic potential of purified root powder of WS in improving the sexual health of stressed sexually sluggish rats.
Collapse
Affiliation(s)
- Anupam Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
4
|
Neculicioiu VS, Colosi IA, Costache C, Toc DA, Sevastre-Berghian A, Colosi HA, Clichici S. Sleep Deprivation-Induced Oxidative Stress in Rat Models: A Scoping Systematic Review. Antioxidants (Basel) 2023; 12:1600. [PMID: 37627596 PMCID: PMC10451248 DOI: 10.3390/antiox12081600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sleep deprivation is highly prevalent in the modern world, possibly reaching epidemic proportions. While multiple theories regarding the roles of sleep exist (inactivity, energy conservation, restoration, brain plasticity and antioxidant), multiple unknowns still remain regarding the proposed antioxidant roles of sleep. The existing experimental evidence is often contradicting, with studies pointing both toward and against the presence of oxidative stress after sleep deprivation. The main goals of this review were to analyze the existing experimental data regarding the relationship between sleep deprivation and oxidative stress, to attempt to further clarify multiple aspects surrounding this relationship and to identify current knowledge gaps. Systematic searches were conducted in three major online databases for experimental studies performed on rat models with oxidative stress measurements, published between 2015 and 2022. A total of 54 studies were included in the review. Most results seem to point to changes in oxidative stress parameters after sleep deprivation, further suggesting an antioxidant role of sleep. Alterations in these parameters were observed in both paradoxical and total sleep deprivation protocols and in multiple rat strains. Furthermore, the effects of sleep deprivation seem to extend beyond the central nervous system, affecting multiple other body sites in the periphery. Sleep recovery seems to be characterized by an increased variability, with the presence of both normalizations in some parameters and long-lasting changes after sleep deprivation. Surprisingly, most studies revealed the presence of a stress response following sleep deprivation. However, the origin and the impact of the stress response during sleep deprivation remain somewhat unclear. While a definitive exclusion of the influence of the sleep deprivation protocol on the stress response is not possible, the available data seem to suggest that the observed stress response may be determined by sleep deprivation itself as opposed to the experimental conditions. Due to this fact, the observed oxidative changes could be attributed directly to sleep deprivation.
Collapse
Affiliation(s)
- Vlad Sever Neculicioiu
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Horațiu Alexandru Colosi
- Division of Medical Informatics and Biostatistics, Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
5
|
KrishnaRaju AV, Somepalli V, Thanawala S, Shah R. Efficacy and Anti-Inflammatory Activity of Ashwagandha Sustained-Release Formulation on Depression and Anxiety Induced by Chronic Unpredictable Stress: in vivo and in vitro Studies. J Exp Pharmacol 2023; 15:291-305. [PMID: 37521489 PMCID: PMC10386834 DOI: 10.2147/jep.s407906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Background Stress is the psychological, physiological, and behavioral response of an individual's body when they perceive a lack of equilibrium between the demands placed upon them and their ability to meet those demands. Adaptogens are herbs that help with stress management, and Ashwagandha is one such safe and effective adaptogen. Objective We evaluated the anti-neuroinflammatory potential of Ashwagandha sustained-release formulation (AshwaSR) by estimating the in vitro expression of pro-inflammatory cytokines, and its efficacy on anxiety and depression in an in vivo study. Methods Our in vitro study investigated the anti-inflammatory potential of AshwaSR by estimating the expression of tumour necrosis factor [TNF]-α and interleukin [IL]-1β levels in LPS-induced THP-1 human monocytes, and the antioxidant effects by its potential to inhibit the superoxide [SO] generation in PMA-induced HL-60 human monocytic cells. The in vivo study assessed the efficacy of AshwaSR on chronic unpredictable stress (CUS)-induced comorbid anxiety and depression in Sprague Dawley rats. Antidepressant and anxiolytic effects of AshwaSR were evaluated by open field test (OFT), elevated plus maze (EPM), forced swim test (FST), and Morris water maze (MWM) test. Results AshwaSR inhibited TNF-α, IL-1β and superoxide production in a dose-dependent manner in the in vitro study. The in vivo CUS model induced depression-like and anxiety-like behaviour. Treatments with AshwaSR and escitalopram showed improvement in the EPM and MWM models compared to the CUS-group. Conclusion In vitro study demonstrated that AshwaSR inhibits expressions of pro-inflammatory cytokines, IL-1β and TNF-α, and superoxide production. Further, the in vivo study confirmed its anxiolytic and stress-relieving effects in the CUS model that confirmed AshwaSR's potential in managing stress and stress-related symptoms.
Collapse
Affiliation(s)
- Alluri Venkata KrishnaRaju
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals, Vijayawada, Andhra Pradesh, India
| | - Venkateswarlu Somepalli
- Department of Research and Development, Laila Nutraceuticals, Vijayawada, Andhra Pradesh, India
| | | | - Rajat Shah
- Medical Affairs, Nutriventia Limited, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Mikulska P, Malinowska M, Ignacyk M, Szustowski P, Nowak J, Pesta K, Szeląg M, Szklanny D, Judasz E, Kaczmarek G, Ejiohuo OP, Paczkowska-Walendowska M, Gościniak A, Cielecka-Piontek J. Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics 2023; 15:pharmaceutics15041057. [PMID: 37111543 PMCID: PMC10147008 DOI: 10.3390/pharmaceutics15041057] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
In recent years, there has been a significant surge in reports on the health-promoting benefits of winter cherry (Withania somnifera), also known as Ashwagandha. Its current research covers many aspects of human health, including neuroprotective, sedative and adaptogenic effects and effects on sleep. There are also reports of anti-inflammatory, antimicrobial, cardioprotective and anti-diabetic properties. Furthermore, there are reports of reproductive outcomes and tarcicidal hormone action. This growing body of research on Ashwagandha highlights its potential as a valuable natural remedy for many health concerns. This narrative review delves into the most recent findings and provides a comprehensive overview of the current understanding of ashwagandha’s potential uses and any known safety concerns and contraindications.
Collapse
|
7
|
D'Cruz M, Andrade C. Potential clinical applications of Ashwagandha ( Withania somnifera) in medicine and neuropsychiatry. Expert Rev Clin Pharmacol 2022; 15:1067-1080. [PMID: 36062480 DOI: 10.1080/17512433.2022.2121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ashwagandha (ASW) is the extract of the plant Withania somnifera. It is widely used in complementary, alternative, and integrative medicine (CAIM) but is little discussed in mainstream modern medical literature. AREAS COVERED We performed a review of potential pharmacotherapeutic properties of ASW. Studies were sourced from relevant online and offline databases. In animal models, ASW displays antioxidant activity. It has GABAergic and other neurotransmitter modulatory effects. It reduces apoptosis and promotes synaptic plasticity. It improves cognition and reverses induced cognitive deficits. It attenuates indices of stress. In human subjects, ASW enhances adaptogenesis in healthy adults. It modestly benefits generalized anxiety disorder and obsessive-compulsive disorder, and symptom severity in schizophrenia, substance use disorders, and attention deficit hyperactivity disorder. It improves sleep quality. EXPERT OPINION ASW may confer modest benefit in certain neuropsychiatric conditions. Its benefits may arise from induction of neuroplasticity, antioxidant and anti-inflammatory effects, and modulation of GABA and glutamate, as well as other neurotransmitters. The antioxidant and anti-inflammatory actions may also benefit neurodegenerative states. Reports of clinical benefit with ASW must be interpreted with caution, given the paucity of randomized clinical trials (RCTs). Greater methodological rigor is necessary before clinical recommendations on ASW can be confidently made.
Collapse
Affiliation(s)
- Migita D'Cruz
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Chittaranjan Andrade
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
8
|
Suganya K, Kayalvizhi E, Senthil Kumar K, Muthulakshmi R, Yuvaraj R. Regulation of pro and anti-inflammatory signaling molecules in effect of Withania Somnifera root extract treated sleep deprivation induced Wistar rats. Bioinformation 2020; 16:856-862. [PMID: 36561228 PMCID: PMC9750873 DOI: 10.6026/97320630016856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Sleep plays an imperative role in maintaining good health. Sleep along with circadian cycle wields strong regulatory control over immunity. Sleep deprivation (SD) is a threat to health developing several immunological disorders. The medicinal plant Withania somnifera (WS) root extract is widely used for its immuno-modulatory properties. Therefore, it is of interest to assess the effect of WS root extract on pro and anti-inflammatory signalling in SD rats. 24 male Wistar rats (120-150g) were divided into 4 groups with 6 animals in each. The groups were divided such that Group I - cage control, Group II - large platform control, Group III - sleep deprived & Group IV - WS treated SD rats. RT-PCR based mRNA expression analysis of pro inflammatory (IL-1β, IL-6, MCP-1, TNF-α) and anti-inflammatory marker (IL-10) in the cortex of control and SD rats were completed. Concurrent protein expression analysis was completed using western blot. Data was analyzed using one-way ANOVA and Duncan's multiple range test in SPSS software version 20. Data showed elevation of pro-inflammatory markers and depression of IL-10. Thus, WS down regulated the pro-inflammatory and up-regulated the anti-inflammatory molecules, which can be further considered towards the treatment of sleep deprivation induced inflammatory diseases.
Collapse
Affiliation(s)
- K Suganya
- Sri Ramachandra Medical College, Porur, Chennai, Tamil Nadu, India
- Meenakhshi Academy of Higher Education and Research, Enathur, Kancheepuram, Tamil Nadu, India
| | - E Kayalvizhi
- Madha Medical College, Kundrathur, Chennai, Tamilnadu, India
| | - K Senthil Kumar
- Madha Medical College, Kundrathur, Chennai, Tamilnadu, India
| | - R Muthulakshmi
- Meenakhshi Academy of Higher Education and Research, Enathur, Kancheepuram, Tamil Nadu, India
| | - R Yuvaraj
- Bharath University, Selaiyur, Chennai, Tamilnadu, India
| |
Collapse
|
9
|
Charu B, Atul U, Umesh S. Efficacy of Brimhana Nasya and Ashwagandha (Withania somnifera (L.) Dunal) root powder in primary insomnia in elderly male: A randomized open-label clinical study. Ayu 2020; 41:159-165. [PMID: 35370376 PMCID: PMC8966760 DOI: 10.4103/ayu.ayu_177_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Accepted: 08/05/2021] [Indexed: 11/04/2022] Open
|