Sathyanarayanan N, Nagendra HG. Genome wide survey and molecular modeling of hypothetical proteins containing 2Fe-2S and FMN binding domains suggests Rieske Dioxygenase Activity highlighting their potential roles in bioremediation.
Bioinformation 2014;
10:68-75. [PMID:
24616557 PMCID:
PMC3937578 DOI:
10.6026/97320630010068]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/26/2014] [Indexed: 12/02/2022] Open
Abstract
‘Conserved hypothetical’ proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there
are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or
Saccharomyces cerevisiae, any discussion towards a ‘complete’ understanding of these biological systems will remain a wishful
thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these
hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in
metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also
called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic
degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins
containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a
phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by
combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain
hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 17 proteins
with N-terminus FNR domain and C-terminus 2Fe-2S domain are characterized, through homology modelling and docking
exercises which suggest dioxygenase activity indicate their plausible roles in degradation of aromatic moieties.
Collapse