1
|
Ghanami Gashti N, Sadighi Gilani MA, Abbasi M. Sertoli cell-only syndrome: etiology and clinical management. J Assist Reprod Genet 2021; 38:559-572. [PMID: 33428073 PMCID: PMC7910341 DOI: 10.1007/s10815-021-02063-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/02/2021] [Indexed: 12/28/2022] Open
Abstract
Almost 50% of infertility cases are due to male factors, and spermatogenesis failure is one of the most severe forms of male infertility. Sertoli cell-only syndrome (SCOS) also known as germ cell aplasia is characterized by azoospermia in which the seminiferous tubules of testicular biopsy are lined only with Sertoli cells. The definitive diagnosis of SCOS is by diagnostic testicular biopsy. Although SCOS may be a result of Klinefelter syndrome, most of the SCOS men have a normal karyotype. Along with genetic aberrations, signaling pathways and endocrine processes might be major factors in the development of SCOS. Sperm retrieval and intracytoplasmic sperm injection (ICSI) are available treatments for SCOS. However, some SCOS patients do not have therapeutic options to help them having a biological child. This review aims to summarize our present knowledge about SCOS and to highlight the importance of future researches in the diagnosis and treatment of this disorder.
Collapse
Affiliation(s)
- Nasrin Ghanami Gashti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kargar-Abarghouei E, Vojdani Z, Hassanpour A, Alaee S, Talaei-Khozani T. Characterization, recellularization, and transplantation of rat decellularized testis scaffold with bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:324. [PMID: 30463594 PMCID: PMC6249892 DOI: 10.1186/s13287-018-1062-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regenerative medicine potentially offers the opportunity for curing male infertility. Native extracellular matrix (ECM) creates a reconstruction platform to replace the organs. In this study, we aimed to evaluate the efficiency of the testis decellularized scaffold as a proper niche for stem cell differentiation toward testis-specific cell lineages. METHODS Rats' testes were decellularized by freeze-thaw cycle followed by immersion in deionized distilled water for 2 h, perfused with 1% Triton X-100 through ductus deferens for 4 h, 1% SDS for 48 h and 1% DNase for 2 h. The decellularized samples were prepared for further in vitro and in vivo analyses. RESULT Histochemical and immunohistochemistry studies revealed that ECM components such as Glycosaminoglycans (GAGs), neutral carbohydrate, elastic fibers, collagen I & IV, laminin, and fibronectin were well preserved, and the cells were completely removed after decellularization. Scanning electron microscopy (SEM) showed that 3D ultrastructure of the testis remained intact. In vivo and in vitro studies point out that decellularized scaffold was non-toxic and performed a good platform for cell division. In vivo implant of the scaffolds with or without mesenchymal stem cells (MSCs) showed that appropriate positions for transplantation were the mesentery and liver and the scaffolds could induce donor-loaded MSCs or host migrating cells to differentiate to the cells with phenotype of the sertoli- and leydig-like cells. The scaffolds also provide a good niche for migrating DAZL-positive cells; however, they could not differentiate into post meiotic-cell lineages. CONCLUSION The decellularized testis can be considered as a promising vehicle to support cell transplantation and may provide an appropriate niche for testicular cell differentiation.
Collapse
Affiliation(s)
- Elias Kargar-Abarghouei
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashraf Hassanpour
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Reproductive Biology Department, School of Advance Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran. .,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Mahabadi JA, Sabzalipour H, Bafrani HH, Gheibi Hayat SM, Nikzad H. Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. J Cell Physiol 2018; 233:8441-8449. [PMID: 29870061 DOI: 10.1002/jcp.26757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/23/2018] [Indexed: 01/18/2023]
Abstract
Stem cells (SCs) are classes of undifferentiated biological cells existing only at the embryonic, fetal, and adult stages that can divide to produce specialized cell types during fetal development and remain in our bodies throughout life. The progression of regenerative and reproductive medicine owes the advancement of respective in vitro and in vivo biological science on the stem cell nature under appropriate conditions. The SCs are promising therapeutic tools to treat currently of infertility because of wide sources and high potency to differentiate. Nevertheless, no effective remedies are available to deal with severe infertility due to congenital or gonadotoxic stem cell deficiency in prepubertal childhood. Some recent solutions have been developed to address the severe fertility problems, including in vitro formation of germ cells from stem cells, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells. There is a possibility of fertility restoration using the in vitro formation of germ cells from somatic cells. Accordingly, the present review aimed at studying the literature published on the medical application of stem cells in reproductive concerns.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipour
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Kshersagar J, Kshirsagar R, Desai S, Bohara R, Joshi M. Decellularized amnion scaffold with activated PRP: a new paradigm dressing material for burn wound healing. Cell Tissue Bank 2018; 19:423-436. [PMID: 29508105 DOI: 10.1007/s10561-018-9688-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/20/2018] [Indexed: 12/29/2022]
Abstract
Direct application of amnion has greater risk of immunological rejection and infection. Decellularization is an effective method to lower the risk of immune complications and infections. The bioreactor assembly with multiple cassettes was designed for decellurization of multiple amnions with different cell types simultaneously in single run. A detergent-based protocol was modified to remove all cellular components from amnion and diminish the DNA content to render it non-immunogenic. Amnion (n = 10) were treated with 2% sodium dodecyl sulphate (SDS), 5% dimethyl sulfoxide (DMSO) and 2% sodium deoxycholeate (SD). Decellularized amnion samples were analyzed by haematoxylin-eosin staining (HE), Alcian blue pH 1 (AB-pH-1), 4,6-diamnionidino-2-phenylindol (DAPI), Massion's trichrome stain, DNA quantification, mechanical testing and scanning electron microscopy (SEM). Histological analysis showed complete removal of cellular components and the histoarchitecture of scaffold remained intact. Amnion scaffold activated with platelet rich plasma (PRP) and calcium chloride composition supported better adherence to the wound than amnion alone. Only single application showed good healing. In vivo assessment of activated amnion revealed stable dressing. It has good promising outcome. At day 7, histologically the wounds treated with activated amnion were almost closed without scarring and showed well differentiated epidermis, proliferation of keratinocytes, hair follicles and basement membrane as compared to controls and silver nitrate gel dressings in a mouse (Mus musculus). Cryopreservation had no adverse effect on the mechanical properties of the amnion scaffold. Cryopreservation of decellularized amnion by Dulbecco's modified eagle medium (DMEM) was expected to prepare off-the-shelf skin substitutes and preserve them to be immediately available upon request of patients' needs.
Collapse
Affiliation(s)
- Jeevitaa Kshersagar
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, MS, 416006, India
| | - Ravi Kshirsagar
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, MS, 416006, India
| | - Shashikant Desai
- Stem Plus Biotech, Block #11, Shiv Meridian, M G Road, Sangli, MS, 416416, India
| | - Raghvendra Bohara
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, MS, 416006, India
| | - Meghnad Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, MS, 416006, India.
| |
Collapse
|
5
|
Esteves SC. Novel concepts in male factor infertility: clinical and laboratory perspectives. J Assist Reprod Genet 2016; 33:1319-1335. [PMID: 27423664 PMCID: PMC5065546 DOI: 10.1007/s10815-016-0763-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Abstract
In recent years, the management of male factor infertility has undergone important changes with the introduction of novel concepts, advanced testing, and therapeutic interventions. This review highlights some of these changes and discusses their impact to routine clinical practice. First, we discuss the recent changes in the World Health Organization (WHO) laboratory methods and reference values for the examination of human semen. Second, we examine the role of sperm chromatin integrity tests in light of increasing evidence of the detrimental effect of sperm DNA fragmentation on reproductive outcomes. Third, we summarize the main findings of varicocele-related infertility and the outcomes of microsurgical varicocele repair to different case scenarios. Lastly, we critically discuss the current management of men with nonobstructive azoospermia seeking fertility and the new opportunities that emerged to help these men achieve biological fatherhood.
Collapse
Affiliation(s)
- Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Av. Dr. Heitor Penteado, 1464, Campinas, SP, 13075-460, Brazil.
| |
Collapse
|
6
|
Franik S, Hoeijmakers Y, D'Hauwers K, Braat DDM, Nelen WLM, Smeets D, Claahsen-van der Grinten HL, Ramos L, Fleischer K. Klinefelter syndrome and fertility: sperm preservation should not be offered to children with Klinefelter syndrome. Hum Reprod 2016; 31:1952-9. [PMID: 27412247 DOI: 10.1093/humrep/dew179] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Should fertility preservation be offered to children with Klinefelter syndrome (KS)? SUMMARY ANSWER Current evidence shows that fertility preservation should not be offered to adolescents with KS younger than 16 years because of lower retrieval rates for germ cells by testicular sperm extraction (TESE) compared with retrieval rates for adolescents and adults between 16 and 30 years. WHAT IS KNOWN ALREADY KS, the most common chromosomal disorder in men leading to non-obstructive azoospermia, is caused by the presence of at least one additional X chromosome. The onset of puberty in adolescents with KS leads to progressive degeneration of the testicular environment. The impact of the subsequent tissue degeneration on fertility potential of patients with KS is unknown, but in previous literature it has been suggested that fertility preservation should be started in adolescents as early as possible. However spermatozoa can be found by TESE in about 50% of adults with KS despite severe testicular degeneration. This review discusses the current evidence for fertility preservation in children and adolescents and possible prognostic markers for fertility treatment in KS. STUDY DESIGN, SIZE, DURATION An extensive literature search was conducted, searching Pubmed, Embase, Cinahl and Web of Science from origin until April 2016 for 'Klinefelter syndrome' and 'fertility' and various synonyms. Titles and abstracts have been scanned manually by the authors for eligibility. PARTICIPANTS/MATERIALS, SETTING, METHODS In total 76 studies were found to be eligible for inclusion in this review. Information from the papers was extracted separately by two authors. MAIN RESULTS AND THE ROLE OF CHANCE Various studies have shown that pre-pubertal children with KS already have a reduced number of germ cells despite a normal hormonal profile during childhood. The presence of spermatozoa in the ejaculate of adolescents with KS is extremely rare. Using TESE, the retrieval rates of spermatozoa for adolescents younger than 16 years old are much lower (0-20%) compared with those for adolescents and young adults between 16 and 30 years old (40-70%). Although spermatogonia can be found by TESE in about half of the peri-pubertal adolescents, there are currently no clinically functional techniques for their future use. Children and adolescents need to be informed that early fertility preservation before the age of 16 cannot guarantee fertility later in life and may even reduce the chances for offspring by removing functional immature germ cells which may possibly develop into spermatozoa after puberty. Furthermore, except for the age of patients with KS, there are no identified factors that can reliably be used as a predictive marker for fertility preservation. LIMITATIONS, REASONS FOR CAUTION Most of the evidence presented in this review is based on studies including a small number of adolescents with KS. Therefore, the studies may have been underpowered to detect clinically significant differences for their various outcomes, especially for potential predictive factors for fertility preservation, such as hormone levels. Furthermore, the population of patients with KS diagnosed during childhood might be different from the adult population with KS where the diagnosis is based on infertility. Results based on comparisons between the two groups must be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS Despite the limitations, this review summarizes the current evidence for managing fertility preservation in patients with KS to provide optimal health care. STUDY FUNDING/COMPETING INTERESTS There was no funding for this study. S.F., Y.H., K.D., W.L.M.N., D.S., H.L.C.-v.d.G. and L.R. declare to have no conflicts of interests. D.D.M.B. reports grants from Merck Serono, grants from Ferring and grants from MSD, outside the submitted work. K.F. reports personal fees from MSD (commercial sponsor), personal fees from Ferring (commercial sponsor), grants from Merck-Serono (commercial sponsor), grants from Ferring (commercial sponsor) and grants from MSD (commercial sponsor), outside the submitted work.
Collapse
Affiliation(s)
- S Franik
- Department of Obstetrics and Gynaecology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Y Hoeijmakers
- Department of Obstetrics and Gynaecology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - K D'Hauwers
- Department of Urology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - D D M Braat
- Department of Obstetrics and Gynaecology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - W L M Nelen
- Department of Obstetrics and Gynaecology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - D Smeets
- Department of Genetics, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | | | - L Ramos
- Department of Obstetrics and Gynaecology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - K Fleischer
- Department of Obstetrics and Gynaecology, Radboudumc Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Gadella BM, Ferraz MA. A Review of New Technologies that may Become Useful for in vitro Production of Boar Sperm. Reprod Domest Anim 2016; 50 Suppl 2:61-70. [PMID: 26174921 DOI: 10.1111/rda.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/07/2023]
Abstract
Making sperm cells outside the original testicular environment in a culture dish has been considered for a long time as impossible due to the very complicated process of spermatogenesis and sperm maturation, which altogether, encompasses a 2-month period. However, new approaches in complex three-dimensional co-cell cultures, micro-perfusion and micro-fluidics technologies, new knowledge in the functioning, culturing and differentiation of spermatogonial stem cells (SSC) and their precursor cells have revolutionized this field. Furthermore, the use of better molecular markers as well as stimulatory factors has led to successful in vitro culture of stem cells either derived from germ line stem cells, from induced pluripotent stem cells (iPSC) or from embryonic stem cells (ESC). These stem cells when placed into small seminiferous tubule fragments are able to become SSC. The SSC beyond self-renewal can also be induced into haploid sperm-like cells under in vitro conditions. In mouse, this in vitro produced sperm can be injected into a mature oocyte and allow post-fertilization development into an early embryo in vitro. After transferring such obtained embryos into the uterus of a recipient mouse, they can further develop into healthy offspring. Recently, a similar approach has been performed with combining selected cells from testicular cell suspensions followed by a complete in vitro culture of seminiferous cords producing sperm-like cells. However, most of the techniques developed are laborious, time-consuming and have low efficiency, placing questionable that it will become useful used for setting up an efficient in vitro sperm production system for the boar. The benefits and drawbacks as well as the likeliness of in vitro pig sperm production to become applied in assisted technologies for swine reproduction are critically discussed. In this contribution, also the process of sperm production in the testis and sperm maturation is reviewed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - M A Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Abstract
The clinical management of men with nonobstructive azoospermia (NOA) seeking fertility has been a challenge for andrologists, urologists, and reproductive medicine specialists alike. This review presents a personal perspective on the clinical management of NOA, including the lessons learned over 15 years dealing with this male infertility condition. A five-consecutive-step algorithm is proposed to manage such patients. First, a differential diagnosis of azoospermia is made to confirm/establish that NOA is due to spermatogenic failure. Second, genetic testing is carried out not only to detect the males in whom NOA is caused by microdeletions of the long arm of the Y chromosome, but also to counsel the affected patients about their chances of having success in sperm retrieval. Third, it is determined whether any intervention prior to a surgical retrieval attempt may be used to increase sperm production. Fourth, the most effective and efficient retrieval method is selected to search for testicular sperm. Lastly, state-of-art laboratory techniques are applied in the handling of retrieved gametes and cultivating the embryos resulting from sperm injections. A coordinated multidisciplinary effort is key to offer the best possible chance of achieving a biological offspring to males with NOA.
Collapse
Affiliation(s)
- Sandro C Esteves
- ANDROFERT, Center for Male Reproduction, Campinas 13075-460, Brazil
| |
Collapse
|
9
|
Uematsu E, Takino S, Okajima H, Tong B, Sugiyama T, Yamada T, Niimura S, Yamashiro H. Use of in ovo chorioallantoic membrane engraftment to culture testes from neonatal mice. Comp Med 2014; 64:264-269. [PMID: 25296013 PMCID: PMC4170091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/15/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Many attempts have been made to culture germ cells in vitro by mimicking their development in vivo. The objective of this study was to establish an alternative method of xenotransplantation by developing a new approach for the rapid induction of spermatogenesis by using the chorioallantoic membrane of developing chicken embryos. Fertilized chicken eggs were incubated for 7 d, after which a small window was cut into the shell of the egg. We then transplanted testes from 7- to 8-d-old B6D2F1 mice onto the vessels of the chorioallantoic membrane and incubated them at 35.0 °C for 14 d or 37.5 °C for 12 d. After this in ovo CAM (iCAM) culture, the survival rates of the eggs and testes were assessed histologically and immunohistologically. The transplanted testes in the chicken embryos that survived were supported by the CAM, with an associated chronic vascularization response. The testes cultured at 35.0 °C had lower rates of generation and higher rates of death than did those cultured at 37.5 °C. Histologic examination of the testes cultured at 37.5 °C revealed the presence of spermatogonia and primary spermatocyte-like germ cells in the seminiferous tubules. The number of cells positive for synaptonemal complex protein 3 in the seminiferous tubules was significantly higher than that in the noniCAM-cultured testes from control mice. These results suggest that iCAM culturing of neonatal donor testis induces androcyte development. This method could be the foundation for a method that would enable in vitro spermatogenesis.
Collapse
Affiliation(s)
- Emi Uematsu
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Sachio Takino
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Hidemi Okajima
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Bin Tong
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | | | - Sueo Niimura
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | |
Collapse
|
10
|
Verver DE, Langedijk NSM, Jordan PW, Repping S, Hamer G. The SMC5/6 complex is involved in crucial processes during human spermatogenesis. Biol Reprod 2014; 91:22. [PMID: 24855106 PMCID: PMC6058740 DOI: 10.1095/biolreprod.114.118596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genome integrity is crucial for safe reproduction. Therefore, chromatin structure and dynamics should be tightly regulated during germ cell development. Chromatin structure and function are in large part determined by the structural maintenance of chromosomes (SMC) protein complexes, of which SMC5/6 recently has been shown to be involved in both spermatogonial differentiation and meiosis during mouse spermatogenesis. We therefore investigated the role of this complex in human spermatogenesis. We found SMC6 to be expressed in the human testis and present in a subset of type Adark and type Apale spermatogonia, all spermatocytes, and round spermatids. During human meiosis, SMC5/6 is located at the synaptonemal complex (SC), the XY body, and at the centromeres during meiotic metaphases. However, in contrast to mouse spermatogenesis, SMC6 is not located at pericentromeric heterochromatin in human spermatogenic cells, indicating subtle but perhaps important differences in not only SMC5/6 function but maybe also in maintenance of genomic integrity at the repetitive pericentromeric regions. Nonetheless, our data clearly indicate that the SMC5/6 complex, as shown in mice, is involved in numerous crucial processes during human spermatogenesis, such as in spermatogonial development, on the SC between synapsed chromosomes, and in DNA double-strand break repair on unsynapsed chromosomes during pachynema.
Collapse
Affiliation(s)
- Dideke E Verver
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalia S M Langedijk
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Sjoerd Repping
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Abstract
This special issue is fully dedicated to the topic of azoospermia and contains the seminal work of renowned scientists and clinicians from seven countries on three continents. In seventeen chapters, a comprehensive review of the epidemiology, genetics, physiopathology, diagnosis, and management of azoospermia addresses our current knowledge on the topic. The clinical results of assisted reproductive techniques applied to this category of male infertility and the health of offspring originating from such fathers are critically analyzed. In addition, the challenges and the future biotechnological perspectives for the treatment of azoospermic males seeking fertility are discussed.
Collapse
|